9.7 KiB
Raw Blame History

AdaptixC2 Konfigurasieuittrekking en TTPs

{{#include ../../banners/hacktricks-training.md}}

AdaptixC2 is 'n modulaire, opensource postexploitation/C2 framework met Windows x86/x64 beacons (EXE/DLL/service EXE/raw shellcode) en BOF support. Hierdie blad dokumenteer:

  • Hoe sy RC4gepakte konfigurasie ingebed is en hoe om dit uit beacons te onttrek
  • Netwerk-/profielindikators vir HTTP/SMB/TCPluisteraars
  • Algemene loader- en persistentieTTPs wat in die veld waargeneem is, met skakels na relevante Windows tegniekbladsye

Beaconprofiele en velde

AdaptixC2 ondersteun drie primêre beacontipes:

  • BEACON_HTTP: web C2 met konfigureerbare servers/poorte/SSL, method, URI, headers, useragent, en 'n persoonlike parameternaam
  • BEACON_SMB: namedpipe peertopeer C2 (intranet)
  • BEACON_TCP: direkte sockets, opsioneel met 'n voorafgevoegde merker om die protokolbegin te obfuskeer

Tipiese profielvelde waargeneem in HTTP beaconkonfigurasies (na ontsleuteling):

  • agent_type (u32)
  • use_ssl (bool)
  • servers_count (u32), servers (array of strings), ports (array of u32)
  • http_method, uri, parameter, user_agent, http_headers (lengthprefixed strings)
  • ans_pre_size (u32), ans_size (u32) used to parse response sizes
  • kill_date (u32), working_time (u32)
  • sleep_delay (u32), jitter_delay (u32)
  • listener_type (u32)
  • download_chunk_size (u32)

Example default HTTP profile (from a beacon build):

{
"agent_type": 3192652105,
"use_ssl": true,
"servers_count": 1,
"servers": ["172.16.196.1"],
"ports": [4443],
"http_method": "POST",
"uri": "/uri.php",
"parameter": "X-Beacon-Id",
"user_agent": "Mozilla/5.0 (Windows NT 6.2; rv:20.0) Gecko/20121202 Firefox/20.0",
"http_headers": "\r\n",
"ans_pre_size": 26,
"ans_size": 47,
"kill_date": 0,
"working_time": 0,
"sleep_delay": 2,
"jitter_delay": 0,
"listener_type": 0,
"download_chunk_size": 102400
}

Waargenome kwaadwillige HTTP-profiel (werklike aanval):

{
"agent_type": 3192652105,
"use_ssl": true,
"servers_count": 1,
"servers": ["tech-system[.]online"],
"ports": [443],
"http_method": "POST",
"uri": "/endpoint/api",
"parameter": "X-App-Id",
"user_agent": "Mozilla/5.0 (Windows NT 10.0; Win64; x64) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/121.0.6167.160 Safari/537.36",
"http_headers": "\r\n",
"ans_pre_size": 26,
"ans_size": 47,
"kill_date": 0,
"working_time": 0,
"sleep_delay": 4,
"jitter_delay": 0,
"listener_type": 0,
"download_chunk_size": 102400
}

Versleutelde konfigurasieverpakking en laaipad

Wanneer die operator op Create in die builder klik, inkorporeer AdaptixC2 die versleutelde profiel as 'n tail blob in die beacon. Die formaat is:

  • 4 bytes: configuration size (uint32, littleendian)
  • N bytes: RC4encrypted configuration data
  • 16 bytes: RC4 key

Die beacon loader kopieer die 16byte key vanaf die einde en RC4decrypts die Nbyte blok in plek:

ULONG profileSize = packer->Unpack32();
this->encrypt_key = (PBYTE) MemAllocLocal(16);
memcpy(this->encrypt_key, packer->data() + 4 + profileSize, 16);
DecryptRC4(packer->data()+4, profileSize, this->encrypt_key, 16);

Praktiese implikasies:

  • Die hele struktuur woon dikwels binne die PE .rdata-seksie.
  • Onttrekking is deterministies: lees size, lees die ciphertext van daardie grootte, lees die 16byte key wat onmiddellik daarna geplaas is, en dan RC4decrypt.

Konfigurasie-onttrekking werkvloei (verdedigers)

Skryf 'n onttrekker wat die beacon logika naboots:

  1. Lokaliseer die blob binne die PE (gewoonlik .rdata). 'n Pragmatiese benadering is om .rdata te deursoek vir 'n plausibele [size|ciphertext|16byte key] uitleg en probeer RC4.
  2. Lees die eerste 4 bytes → size (uint32 LE).
  3. Lees die volgende N=size bytes → ciphertext.
  4. Lees die finale 16 bytes → RC4 key.
  5. RC4decrypt die ciphertext. Parse dan die plain profile soos:
  • u32/boolean scalars soos hierbo vermeld
  • lengthprefixed strings (u32 length followed by bytes; trailing NUL can be present)
  • arrays: servers_count gevolg deur daardie aantal [string, u32 port] pare

Minimal Python proofofconcept (standalone, geen eksterne afhanklikhede) wat werk met 'n vooraf-onttrekte blob:

import struct
from typing import List, Tuple

def rc4(key: bytes, data: bytes) -> bytes:
S = list(range(256))
j = 0
for i in range(256):
j = (j + S[i] + key[i % len(key)]) & 0xFF
S[i], S[j] = S[j], S[i]
i = j = 0
out = bytearray()
for b in data:
i = (i + 1) & 0xFF
j = (j + S[i]) & 0xFF
S[i], S[j] = S[j], S[i]
K = S[(S[i] + S[j]) & 0xFF]
out.append(b ^ K)
return bytes(out)

class P:
def __init__(self, buf: bytes):
self.b = buf; self.o = 0
def u32(self) -> int:
v = struct.unpack_from('<I', self.b, self.o)[0]; self.o += 4; return v
def u8(self) -> int:
v = self.b[self.o]; self.o += 1; return v
def s(self) -> str:
L = self.u32(); s = self.b[self.o:self.o+L]; self.o += L
return s[:-1].decode('utf-8','replace') if L and s[-1] == 0 else s.decode('utf-8','replace')

def parse_http_cfg(plain: bytes) -> dict:
p = P(plain)
cfg = {}
cfg['agent_type']    = p.u32()
cfg['use_ssl']       = bool(p.u8())
n                    = p.u32()
cfg['servers']       = []
cfg['ports']         = []
for _ in range(n):
cfg['servers'].append(p.s())
cfg['ports'].append(p.u32())
cfg['http_method']   = p.s()
cfg['uri']           = p.s()
cfg['parameter']     = p.s()
cfg['user_agent']    = p.s()
cfg['http_headers']  = p.s()
cfg['ans_pre_size']  = p.u32()
cfg['ans_size']      = p.u32() + cfg['ans_pre_size']
cfg['kill_date']     = p.u32()
cfg['working_time']  = p.u32()
cfg['sleep_delay']   = p.u32()
cfg['jitter_delay']  = p.u32()
cfg['listener_type'] = 0
cfg['download_chunk_size'] = 0x19000
return cfg

# Usage (when you have [size|ciphertext|key] bytes):
# blob = open('blob.bin','rb').read()
# size = struct.unpack_from('<I', blob, 0)[0]
# ct   = blob[4:4+size]
# key  = blob[4+size:4+size+16]
# pt   = rc4(key, ct)
# cfg  = parse_http_cfg(pt)

Tips:

  • When automating, use a PE parser to read .rdata then apply a skuiwende venster: for each offset o, try size = u32(.rdata[o:o+4]), ct = .rdata[o+4:o+4+size], candidate key = next 16 bytes; RC4decrypt and check that string fields decode as UTF8 and lengths are sane.
  • Ontleed SMB/TCPprofiele deur dieselfde lengtevoorafgeplakte konvensies te volg.

Network fingerprinting and hunting

HTTP

  • Common: POST to operatorselected URIs (e.g., /uri.php, /endpoint/api)
  • Pasgemaakte headerparameter gebruik vir beacon ID (e.g., XBeaconId, XAppId)
  • Useragents mimicking Firefox 20 or contemporary Chrome builds
  • Pollingkadens sigbaar via sleep_delay/jitter_delay

SMB/TCP

  • SMB namedpipe listeners vir intranet C2 waar web egress beperk is
  • TCP beacons kan 'n paar bytes voor verkeer vooraan sit om protocolbegin te obfuskeer

Loader and persistence TTPs seen in incidents

Inmemory PowerShell loaders

  • Laai Base64/XOR payloads af (InvokeRestMethod / WebClient)
  • Allocate unmanaged memory, copy shellcode, switch protection to 0x40 (PAGE_EXECUTE_READWRITE) via VirtualProtect
  • Execute via .NET dynamic invocation: Marshal.GetDelegateForFunctionPointer + delegate.Invoke()

Check these pages for inmemory execution and AMSI/ETW considerations:

{{#ref}} ../../windows-hardening/av-bypass.md {{#endref}}

Persistence mechanisms observed

  • Startup folder shortcut (.lnk) to relaunch a loader at logon
  • Registry Run keys (HKCU/HKLM ...\CurrentVersion\Run), often with benignsounding names like "Updater" to start loader.ps1
  • DLL searchorder hijack by dropping msimg32.dll under %APPDATA%\Microsoft\Windows\Templates for susceptible processes

Technique deepdives and checks:

{{#ref}} ../../windows-hardening/windows-local-privilege-escalation/privilege-escalation-with-autorun-binaries.md {{#endref}}

{{#ref}} ../../windows-hardening/windows-local-privilege-escalation/dll-hijacking/README.md {{#endref}}

Hunting ideas

  • PowerShell spawning RW→RX transitions: VirtualProtect to PAGE_EXECUTE_READWRITE inside powershell.exe
  • Dynamic invocation patterns (GetDelegateForFunctionPointer)
  • Startup .lnk under user or common Startup folders
  • Suspicious Run keys (e.g., "Updater"), and loader names like update.ps1/loader.ps1
  • Userwritable DLL paths under %APPDATA%\Microsoft\Windows\Templates containing msimg32.dll

Notes on OpSec fields

  • KillDate: timestamp after which the agent selfexpires
  • WorkingTime: hours when the agent should be active to blend with business activity

These fields can be used for clustering and to explain observed quiet periods.

YARA and static leads

Unit 42 published basic YARA for beacons (C/C++ and Go) and loader APIhashing constants. Consider complementing with rules that look for the [size|ciphertext|16bytekey] layout near PE .rdata end and the default HTTP profile strings.

References

{{#include ../../banners/hacktricks-training.md}}