hacktricks/src/todo/rust-basics.md

289 lines
6.1 KiB
Markdown

# Rust Basics
### Tipos Genéricos
Crea una estructura donde 1 de sus valores podría ser de cualquier tipo.
```rust
struct Wrapper<T> {
value: T,
}
impl<T> Wrapper<T> {
pub fn new(value: T) -> Self {
Wrapper { value }
}
}
Wrapper::new(42).value
Wrapper::new("Foo").value, "Foo"
```
### Opción, Some y None
El tipo Option significa que el valor puede ser del tipo Some (hay algo) o None:
```rust
pub enum Option<T> {
None,
Some(T),
}
```
Puedes usar funciones como `is_some()` o `is_none()` para verificar el valor de la Opción.
### Macros
Las macros son más poderosas que las funciones porque se expanden para producir más código del que has escrito manualmente. Por ejemplo, una firma de función debe declarar el número y tipo de parámetros que tiene la función. Las macros, por otro lado, pueden tomar un número variable de parámetros: podemos llamar a `println!("hello")` con un argumento o `println!("hello {}", name)` con dos argumentos. Además, las macros se expanden antes de que el compilador interprete el significado del código, por lo que una macro puede, por ejemplo, implementar un rasgo en un tipo dado. Una función no puede, porque se llama en tiempo de ejecución y un rasgo necesita ser implementado en tiempo de compilación.
```rust
macro_rules! my_macro {
() => {
println!("Check out my macro!");
};
($val:expr) => {
println!("Look at this other macro: {}", $val);
}
}
fn main() {
my_macro!();
my_macro!(7777);
}
// Export a macro from a module
mod macros {
#[macro_export]
macro_rules! my_macro {
() => {
println!("Check out my macro!");
};
}
}
```
### Iterar
```rust
// Iterate through a vector
let my_fav_fruits = vec!["banana", "raspberry"];
let mut my_iterable_fav_fruits = my_fav_fruits.iter();
assert_eq!(my_iterable_fav_fruits.next(), Some(&"banana"));
assert_eq!(my_iterable_fav_fruits.next(), Some(&"raspberry"));
assert_eq!(my_iterable_fav_fruits.next(), None); // When it's over, it's none
// One line iteration with action
my_fav_fruits.iter().map(|x| capitalize_first(x)).collect()
// Hashmap iteration
for (key, hashvalue) in &*map {
for key in map.keys() {
for value in map.values() {
```
### Caja Recursiva
```rust
enum List {
Cons(i32, List),
Nil,
}
let list = Cons(1, Cons(2, Cons(3, Nil)));
```
### Condicionales
#### si
```rust
let n = 5;
if n < 0 {
print!("{} is negative", n);
} else if n > 0 {
print!("{} is positive", n);
} else {
print!("{} is zero", n);
}
```
#### coincidencia
```rust
match number {
// Match a single value
1 => println!("One!"),
// Match several values
2 | 3 | 5 | 7 | 11 => println!("This is a prime"),
// TODO ^ Try adding 13 to the list of prime values
// Match an inclusive range
13..=19 => println!("A teen"),
// Handle the rest of cases
_ => println!("Ain't special"),
}
let boolean = true;
// Match is an expression too
let binary = match boolean {
// The arms of a match must cover all the possible values
false => 0,
true => 1,
// TODO ^ Try commenting out one of these arms
};
```
#### bucle (infinito)
```rust
loop {
count += 1;
if count == 3 {
println!("three");
continue;
}
println!("{}", count);
if count == 5 {
println!("OK, that's enough");
break;
}
}
```
#### mientras
```rust
let mut n = 1;
while n < 101 {
if n % 15 == 0 {
println!("fizzbuzz");
} else if n % 5 == 0 {
println!("buzz");
} else {
println!("{}", n);
}
n += 1;
}
```
#### para
```rust
for n in 1..101 {
if n % 15 == 0 {
println!("fizzbuzz");
} else {
println!("{}", n);
}
}
// Use "..=" to make inclusive both ends
for n in 1..=100 {
if n % 15 == 0 {
println!("fizzbuzz");
} else if n % 3 == 0 {
println!("fizz");
} else if n % 5 == 0 {
println!("buzz");
} else {
println!("{}", n);
}
}
// ITERATIONS
let names = vec!["Bob", "Frank", "Ferris"];
//iter - Doesn't consume the collection
for name in names.iter() {
match name {
&"Ferris" => println!("There is a rustacean among us!"),
_ => println!("Hello {}", name),
}
}
//into_iter - COnsumes the collection
for name in names.into_iter() {
match name {
"Ferris" => println!("There is a rustacean among us!"),
_ => println!("Hello {}", name),
}
}
//iter_mut - This mutably borrows each element of the collection
for name in names.iter_mut() {
*name = match name {
&mut "Ferris" => "There is a rustacean among us!",
_ => "Hello",
}
}
```
#### if let
```rust
let optional_word = Some(String::from("rustlings"));
if let word = optional_word {
println!("The word is: {}", word);
} else {
println!("The optional word doesn't contain anything");
}
```
#### mientras que let
```rust
let mut optional = Some(0);
// This reads: "while `let` destructures `optional` into
// `Some(i)`, evaluate the block (`{}`). Else `break`.
while let Some(i) = optional {
if i > 9 {
println!("Greater than 9, quit!");
optional = None;
} else {
println!("`i` is `{:?}`. Try again.", i);
optional = Some(i + 1);
}
// ^ Less rightward drift and doesn't require
// explicitly handling the failing case.
}
```
### Rasgos
Crea un nuevo método para un tipo
```rust
trait AppendBar {
fn append_bar(self) -> Self;
}
impl AppendBar for String {
fn append_bar(self) -> Self{
format!("{}Bar", self)
}
}
let s = String::from("Foo");
let s = s.append_bar();
println!("s: {}", s);
```
### Pruebas
```rust
#[cfg(test)]
mod tests {
#[test]
fn you_can_assert() {
assert!(true);
assert_eq!(true, true);
assert_ne!(true, false);
}
}
```
### Threading
#### Arc
Un Arc puede usar Clone para crear más referencias sobre el objeto y pasarlas a los hilos. Cuando el último puntero de referencia a un valor sale del alcance, la variable se elimina.
```rust
use std::sync::Arc;
let apple = Arc::new("the same apple");
for _ in 0..10 {
let apple = Arc::clone(&apple);
thread::spawn(move || {
println!("{:?}", apple);
});
}
```
#### Hilos
En este caso, pasaremos al hilo una variable que podrá modificar.
```rust
fn main() {
let status = Arc::new(Mutex::new(JobStatus { jobs_completed: 0 }));
let status_shared = Arc::clone(&status);
thread::spawn(move || {
for _ in 0..10 {
thread::sleep(Duration::from_millis(250));
let mut status = status_shared.lock().unwrap();
status.jobs_completed += 1;
}
});
while status.lock().unwrap().jobs_completed < 10 {
println!("waiting... ");
thread::sleep(Duration::from_millis(500));
}
}
```