# POSIX CPU Timers TOCTOU race (CVE-2025-38352) {{#include ../../banners/hacktricks-training.md}} Ta strona opisuje błąd TOCTOU w Linux/Android POSIX CPU timers, który może uszkodzić stan timera i spowodować awarię jądra, a w niektórych okolicznościach może zostać wykorzystany do eskalacji uprawnień. - Affected component: kernel/time/posix-cpu-timers.c - Primitive: wyścig między expiry a deletion podczas zakończenia zadania - Config sensitive: CONFIG_POSIX_CPU_TIMERS_TASK_WORK=n (IRQ-context expiry path) Krótkie przypomnienie wewnętrzne (istotne dla exploitation) - Trzy zegary CPU odpowiadają za rozliczanie timerów przez cpu_clock_sample(): - CPUCLOCK_PROF: utime + stime - CPUCLOCK_VIRT: utime only - CPUCLOCK_SCHED: task_sched_runtime() - Tworzenie timera powiązuje timer z task/pid i inicjalizuje węzły timerqueue: ```c static int posix_cpu_timer_create(struct k_itimer *new_timer) { struct pid *pid; rcu_read_lock(); pid = pid_for_clock(new_timer->it_clock, false); if (!pid) { rcu_read_unlock(); return -EINVAL; } new_timer->kclock = &clock_posix_cpu; timerqueue_init(&new_timer->it.cpu.node); new_timer->it.cpu.pid = get_pid(pid); rcu_read_unlock(); return 0; } ``` - Uzbrajanie wstawia wpis do per-base timerqueue i może zaktualizować pamięć podręczną następnego wygaśnięcia: ```c static void arm_timer(struct k_itimer *timer, struct task_struct *p) { struct posix_cputimer_base *base = timer_base(timer, p); struct cpu_timer *ctmr = &timer->it.cpu; u64 newexp = cpu_timer_getexpires(ctmr); if (!cpu_timer_enqueue(&base->tqhead, ctmr)) return; if (newexp < base->nextevt) base->nextevt = newexp; } ``` - Szybka ścieżka unika kosztownego przetwarzania, chyba że zbuforowane czasy wygaśnięcia wskazują na możliwe wyzwolenie: ```c static inline bool fastpath_timer_check(struct task_struct *tsk) { struct posix_cputimers *pct = &tsk->posix_cputimers; if (!expiry_cache_is_inactive(pct)) { u64 samples[CPUCLOCK_MAX]; task_sample_cputime(tsk, samples); if (task_cputimers_expired(samples, pct)) return true; } return false; } ``` - Wygaśnięcie zbiera wygasłe timery, oznacza je jako gotowe do wykonania, usuwa je z kolejki; faktyczne dostarczenie jest odroczone: ```c #define MAX_COLLECTED 20 static u64 collect_timerqueue(struct timerqueue_head *head, struct list_head *firing, u64 now) { struct timerqueue_node *next; int i = 0; while ((next = timerqueue_getnext(head))) { struct cpu_timer *ctmr = container_of(next, struct cpu_timer, node); u64 expires = cpu_timer_getexpires(ctmr); if (++i == MAX_COLLECTED || now < expires) return expires; ctmr->firing = 1; // critical state rcu_assign_pointer(ctmr->handling, current); cpu_timer_dequeue(ctmr); list_add_tail(&ctmr->elist, firing); } return U64_MAX; } ``` Dwa tryby obsługi wygaśnięć - CONFIG_POSIX_CPU_TIMERS_TASK_WORK=y: wygaśnięcie jest odroczone za pomocą task_work na docelowym zadaniu - CONFIG_POSIX_CPU_TIMERS_TASK_WORK=n: wygaśnięcie obsługiwane bezpośrednio w kontekście IRQ ```c void run_posix_cpu_timers(void) { struct task_struct *tsk = current; __run_posix_cpu_timers(tsk); } #ifdef CONFIG_POSIX_CPU_TIMERS_TASK_WORK static inline void __run_posix_cpu_timers(struct task_struct *tsk) { if (WARN_ON_ONCE(tsk->posix_cputimers_work.scheduled)) return; tsk->posix_cputimers_work.scheduled = true; task_work_add(tsk, &tsk->posix_cputimers_work.work, TWA_RESUME); } #else static inline void __run_posix_cpu_timers(struct task_struct *tsk) { lockdep_posixtimer_enter(); handle_posix_cpu_timers(tsk); // IRQ-context path lockdep_posixtimer_exit(); } #endif ``` W ścieżce IRQ-context firing list jest przetwarzana poza sighand ```c static void handle_posix_cpu_timers(struct task_struct *tsk) { struct k_itimer *timer, *next; unsigned long flags, start; LIST_HEAD(firing); if (!lock_task_sighand(tsk, &flags)) return; // may fail on exit do { start = READ_ONCE(jiffies); barrier(); check_thread_timers(tsk, &firing); check_process_timers(tsk, &firing); } while (!posix_cpu_timers_enable_work(tsk, start)); unlock_task_sighand(tsk, &flags); // race window opens here list_for_each_entry_safe(timer, next, &firing, it.cpu.elist) { int cpu_firing; spin_lock(&timer->it_lock); list_del_init(&timer->it.cpu.elist); cpu_firing = timer->it.cpu.firing; // read then reset timer->it.cpu.firing = 0; if (likely(cpu_firing >= 0)) cpu_timer_fire(timer); rcu_assign_pointer(timer->it.cpu.handling, NULL); spin_unlock(&timer->it_lock); } } ``` Root cause: TOCTOU between IRQ-time expiry and concurrent deletion under task exit Preconditions - CONFIG_POSIX_CPU_TIMERS_TASK_WORK is disabled (IRQ path in use) - The target task is exiting but not fully reaped - Another thread concurrently calls posix_cpu_timer_del() for the same timer Sequence 1) update_process_times() triggers run_posix_cpu_timers() in IRQ context for the exiting task. 2) collect_timerqueue() sets ctmr->firing = 1 and moves the timer to the temporary firing list. 3) handle_posix_cpu_timers() drops sighand via unlock_task_sighand() to deliver timers outside the lock. 4) Immediately after unlock, the exiting task can be reaped; a sibling thread executes posix_cpu_timer_del(). 5) In this window, posix_cpu_timer_del() may fail to acquire state via cpu_timer_task_rcu()/lock_task_sighand() and thus skip the normal in-flight guard that checks timer->it.cpu.firing. Deletion proceeds as if not firing, corrupting state while expiry is being handled, leading to crashes/UB. Why TASK_WORK mode is safe by design - With CONFIG_POSIX_CPU_TIMERS_TASK_WORK=y, expiry is deferred to task_work; exit_task_work runs before exit_notify, so the IRQ-time overlap with reaping does not occur. - Even then, if the task is already exiting, task_work_add() fails; gating on exit_state makes both modes consistent. Fix (Android common kernel) and rationale - Add an early return if current task is exiting, gating all processing: ```c // kernel/time/posix-cpu-timers.c (Android common kernel commit 157f357d50b5038e5eaad0b2b438f923ac40afeb) if (tsk->exit_state) return; ``` - To zapobiega wejściu do handle_posix_cpu_timers() dla kończących się zadań, eliminując okno, w którym posix_cpu_timer_del() mógłby pominąć it.cpu.firing i wejść w wyścig z przetwarzaniem wygaśnięcia. Wpływ - Uszkodzenie pamięci jądra struktur timerów podczas równoczesnego expiry/deletion może prowadzić do natychmiastowych awarii (DoS) i stanowi silny prymityw umożliwiający eskalację uprawnień z powodu możliwości dowolnej manipulacji stanem jądra. Wywoływanie błędu (bezpieczne, odtwarzalne warunki) Build/config - Upewnij się, że CONFIG_POSIX_CPU_TIMERS_TASK_WORK=n i użyj jądra bez exit_state gating fix. Runtime strategy - Wybierz wątek, który zaraz zakończy działanie, i przypisz do niego CPU timer (per-thread or process-wide clock): - For per-thread: timer_create(CLOCK_THREAD_CPUTIME_ID, ...) - For process-wide: timer_create(CLOCK_PROCESS_CPUTIME_ID, ...) - Ustaw bardzo krótki początkowy czas wygaśnięcia i mały interwał, aby zmaksymalizować wejścia w ścieżkę IRQ: ```c static timer_t t; static void setup_cpu_timer(void) { struct sigevent sev = {0}; sev.sigev_notify = SIGEV_SIGNAL; // delivery type not critical for the race sev.sigev_signo = SIGUSR1; if (timer_create(CLOCK_THREAD_CPUTIME_ID, &sev, &t)) perror("timer_create"); struct itimerspec its = {0}; its.it_value.tv_nsec = 1; // fire ASAP its.it_interval.tv_nsec = 1; // re-fire if (timer_settime(t, 0, &its, NULL)) perror("timer_settime"); } ``` - Z równoległego wątku jednocześnie usuń ten sam timer, gdy wątek docelowy kończy działanie: ```c void *deleter(void *arg) { for (;;) (void)timer_delete(t); // hammer delete in a loop } ``` - Race amplifiers: wysoki współczynnik ticków planera, obciążenie CPU, powtarzające się cykle exit/re-create wątków. Awaria zwykle objawia się, gdy posix_cpu_timer_del() pomija wykrycie firing z powodu nieudanego task lookup/locking tuż po unlock_task_sighand(). Wykrywanie i utwardzanie - Środki zaradcze: zastosować exit_state guard; preferować włączenie CONFIG_POSIX_CPU_TIMERS_TASK_WORK, gdy to możliwe. - Obserwowalność: dodać tracepoints/WARN_ONCE wokół unlock_task_sighand()/posix_cpu_timer_del(); generować alert, gdy it.cpu.firing==1 jest obserwowane razem z nieudanym cpu_timer_task_rcu()/lock_task_sighand(); monitorować niespójności timerqueue wokół exit zadania. Obszary audytu (dla recenzentów) - update_process_times() → run_posix_cpu_timers() (IRQ) - __run_posix_cpu_timers() selection (TASK_WORK vs IRQ path) - collect_timerqueue(): ustawia ctmr->firing i przesuwa węzły - handle_posix_cpu_timers(): zwalnia sighand przed pętlą firing - posix_cpu_timer_del(): polega na it.cpu.firing do wykrycia wygaśnięcia w locie; ta kontrola jest pomijana, gdy task lookup/lock nie powiedzie się podczas exit/reap Uwagi dla badań nad eksploatacją - Opisane zachowanie jest niezawodnym prymitywem powodującym awarię jądra; przekształcenie go w privilege escalation zwykle wymaga dodatkowego, kontrolowalnego overlapu (object lifetime lub write-what-where influence) wykraczającego poza zakres tego podsumowania. Traktuj każde PoC jako potencjalnie destabilizujące i uruchamiaj wyłącznie w emulatorach/VMs. ## References - [Race Against Time in the Kernel’s Clockwork (StreyPaws)](https://streypaws.github.io/posts/Race-Against-Time-in-the-Kernel-Clockwork/) - [Android security bulletin – September 2025](https://source.android.com/docs/security/bulletin/2025-09-01) - [Android common kernel patch commit 157f357d50b5…](https://android.googlesource.com/kernel/common/+/157f357d50b5038e5eaad0b2b438f923ac40afeb%5E%21/#F0) {{#include ../../banners/hacktricks-training.md}}