# 7.0. LoRA Improvements in fine-tuning ## LoRA Improvements > [!TIP] > Використання **LoRA значно зменшує обчислення**, необхідні для **додаткового налаштування** вже навчених моделей. LoRA дозволяє ефективно додатково налаштовувати **великі моделі**, змінюючи лише **невелику частину** моделі. Це зменшує кількість параметрів, які потрібно навчати, економлячи **пам'ять** та **обчислювальні ресурси**. Це відбувається тому, що: 1. **Зменшує кількість навчальних параметрів**: Замість оновлення всієї матриці ваг у моделі, LoRA **ділить** матрицю ваг на дві менші матриці (названі **A** та **B**). Це робить навчання **швидшим** і вимагає **менше пам'яті**, оскільки потрібно оновити менше параметрів. 1. Це відбувається тому, що замість обчислення повного оновлення ваги шару (матриці), воно апроксимує його до добутку 2 менших матриць, зменшуючи оновлення для обчислення:\
2. **Зберігає оригінальні ваги моделі незмінними**: LoRA дозволяє зберігати оригінальні ваги моделі такими ж, і лише оновлює **нові маленькі матриці** (A та B). Це корисно, оскільки означає, що оригінальні знання моделі зберігаються, і ви лише налаштовуєте те, що необхідно. 3. **Ефективне специфічне налаштування завдань**: Коли ви хочете адаптувати модель до **нового завдання**, ви можете просто навчити **маленькі матриці LoRA** (A та B), залишаючи решту моделі без змін. Це **набагато ефективніше**, ніж повторне навчання всієї моделі. 4. **Ефективність зберігання**: Після додаткового налаштування, замість збереження **цілої нової моделі** для кожного завдання, вам потрібно зберігати лише **матриці LoRA**, які є дуже маленькими в порівнянні з усією моделлю. Це полегшує адаптацію моделі до багатьох завдань без використання занадто багато пам'яті. Для реалізації LoraLayers замість лінійних під час додаткового налаштування, тут пропонується цей код [https://github.com/rasbt/LLMs-from-scratch/blob/main/appendix-E/01_main-chapter-code/appendix-E.ipynb](https://github.com/rasbt/LLMs-from-scratch/blob/main/appendix-E/01_main-chapter-code/appendix-E.ipynb): ```python import math # Create the LoRA layer with the 2 matrices and the alpha class LoRALayer(torch.nn.Module): def __init__(self, in_dim, out_dim, rank, alpha): super().__init__() self.A = torch.nn.Parameter(torch.empty(in_dim, rank)) torch.nn.init.kaiming_uniform_(self.A, a=math.sqrt(5)) # similar to standard weight initialization self.B = torch.nn.Parameter(torch.zeros(rank, out_dim)) self.alpha = alpha def forward(self, x): x = self.alpha * (x @ self.A @ self.B) return x # Combine it with the linear layer class LinearWithLoRA(torch.nn.Module): def __init__(self, linear, rank, alpha): super().__init__() self.linear = linear self.lora = LoRALayer( linear.in_features, linear.out_features, rank, alpha ) def forward(self, x): return self.linear(x) + self.lora(x) # Replace linear layers with LoRA ones def replace_linear_with_lora(model, rank, alpha): for name, module in model.named_children(): if isinstance(module, torch.nn.Linear): # Replace the Linear layer with LinearWithLoRA setattr(model, name, LinearWithLoRA(module, rank, alpha)) else: # Recursively apply the same function to child modules replace_linear_with_lora(module, rank, alpha) ``` ## References - [https://www.manning.com/books/build-a-large-language-model-from-scratch](https://www.manning.com/books/build-a-large-language-model-from-scratch)