# ELF Tricks {{#include ../../banners/hacktricks-training.md}} ## Program Headers Describen al cargador cómo cargar el ELF en memoria: ```bash readelf -lW lnstat Elf file type is DYN (Position-Independent Executable file) Entry point 0x1c00 There are 9 program headers, starting at offset 64 Program Headers: Type Offset VirtAddr PhysAddr FileSiz MemSiz Flg Align PHDR 0x000040 0x0000000000000040 0x0000000000000040 0x0001f8 0x0001f8 R 0x8 INTERP 0x000238 0x0000000000000238 0x0000000000000238 0x00001b 0x00001b R 0x1 [Requesting program interpreter: /lib/ld-linux-aarch64.so.1] LOAD 0x000000 0x0000000000000000 0x0000000000000000 0x003f7c 0x003f7c R E 0x10000 LOAD 0x00fc48 0x000000000001fc48 0x000000000001fc48 0x000528 0x001190 RW 0x10000 DYNAMIC 0x00fc58 0x000000000001fc58 0x000000000001fc58 0x000200 0x000200 RW 0x8 NOTE 0x000254 0x0000000000000254 0x0000000000000254 0x0000e0 0x0000e0 R 0x4 GNU_EH_FRAME 0x003610 0x0000000000003610 0x0000000000003610 0x0001b4 0x0001b4 R 0x4 GNU_STACK 0x000000 0x0000000000000000 0x0000000000000000 0x000000 0x000000 RW 0x10 GNU_RELRO 0x00fc48 0x000000000001fc48 0x000000000001fc48 0x0003b8 0x0003b8 R 0x1 Section to Segment mapping: Segment Sections... 00 01 .interp 02 .interp .note.gnu.build-id .note.ABI-tag .note.package .gnu.hash .dynsym .dynstr .gnu.version .gnu.version_r .rela.dyn .rela.plt .init .plt .text .fini .rodata .eh_frame_hdr .eh_frame 03 .init_array .fini_array .dynamic .got .data .bss 04 .dynamic 05 .note.gnu.build-id .note.ABI-tag .note.package 06 .eh_frame_hdr 07 08 .init_array .fini_array .dynamic .got ``` El programa anterior tiene **9 encabezados de programa**, luego, el **mapeo de segmentos** indica en qué encabezado de programa (del 00 al 08) **se encuentra cada sección**. ### PHDR - Encabezado de Programa Contiene las tablas de encabezados de programa y la metadata en sí. ### INTERP Indica la ruta del cargador que se utilizará para cargar el binario en memoria. ### LOAD Estos encabezados se utilizan para indicar **cómo cargar un binario en memoria.**\ Cada encabezado **LOAD** indica una región de **memoria** (tamaño, permisos y alineación) e indica los bytes del **binario ELF que se copiarán allí**. Por ejemplo, el segundo tiene un tamaño de 0x1190, debe estar ubicado en 0x1fc48 con permisos de lectura y escritura y se llenará con 0x528 desde el desplazamiento 0xfc48 (no llena todo el espacio reservado). Esta memoria contendrá las secciones `.init_array .fini_array .dynamic .got .data .bss`. ### DYNAMIC Este encabezado ayuda a vincular programas a sus dependencias de biblioteca y aplicar reubicaciones. Consulta la sección **`.dynamic`**. ### NOTE Esto almacena información de metadata del proveedor sobre el binario. ### GNU_EH_FRAME Define la ubicación de las tablas de deshacer la pila, utilizadas por depuradores y funciones de tiempo de ejecución de manejo de excepciones en C++. ### GNU_STACK Contiene la configuración de la defensa de prevención de ejecución de la pila. Si está habilitado, el binario no podrá ejecutar código desde la pila. ### GNU_RELRO Indica la configuración RELRO (Relocation Read-Only) del binario. Esta protección marcará como de solo lectura ciertas secciones de la memoria (como el `GOT` o las tablas `init` y `fini`) después de que el programa se haya cargado y antes de que comience a ejecutarse. En el ejemplo anterior, está copiando 0x3b8 bytes a 0x1fc48 como de solo lectura, afectando las secciones `.init_array .fini_array .dynamic .got .data .bss`. Ten en cuenta que RELRO puede ser parcial o completo, la versión parcial no protege la sección **`.plt.got`**, que se utiliza para **vinculación perezosa** y necesita este espacio de memoria para tener **permisos de escritura** para escribir la dirección de las bibliotecas la primera vez que se busca su ubicación. ### TLS Define una tabla de entradas TLS, que almacena información sobre variables locales de hilo. ## Encabezados de Sección Los encabezados de sección ofrecen una vista más detallada del binario ELF. ``` objdump lnstat -h lnstat: file format elf64-littleaarch64 Sections: Idx Name Size VMA LMA File off Algn 0 .interp 0000001b 0000000000000238 0000000000000238 00000238 2**0 CONTENTS, ALLOC, LOAD, READONLY, DATA 1 .note.gnu.build-id 00000024 0000000000000254 0000000000000254 00000254 2**2 CONTENTS, ALLOC, LOAD, READONLY, DATA 2 .note.ABI-tag 00000020 0000000000000278 0000000000000278 00000278 2**2 CONTENTS, ALLOC, LOAD, READONLY, DATA 3 .note.package 0000009c 0000000000000298 0000000000000298 00000298 2**2 CONTENTS, ALLOC, LOAD, READONLY, DATA 4 .gnu.hash 0000001c 0000000000000338 0000000000000338 00000338 2**3 CONTENTS, ALLOC, LOAD, READONLY, DATA 5 .dynsym 00000498 0000000000000358 0000000000000358 00000358 2**3 CONTENTS, ALLOC, LOAD, READONLY, DATA 6 .dynstr 000001fe 00000000000007f0 00000000000007f0 000007f0 2**0 CONTENTS, ALLOC, LOAD, READONLY, DATA 7 .gnu.version 00000062 00000000000009ee 00000000000009ee 000009ee 2**1 CONTENTS, ALLOC, LOAD, READONLY, DATA 8 .gnu.version_r 00000050 0000000000000a50 0000000000000a50 00000a50 2**3 CONTENTS, ALLOC, LOAD, READONLY, DATA 9 .rela.dyn 00000228 0000000000000aa0 0000000000000aa0 00000aa0 2**3 CONTENTS, ALLOC, LOAD, READONLY, DATA 10 .rela.plt 000003c0 0000000000000cc8 0000000000000cc8 00000cc8 2**3 CONTENTS, ALLOC, LOAD, READONLY, DATA 11 .init 00000018 0000000000001088 0000000000001088 00001088 2**2 CONTENTS, ALLOC, LOAD, READONLY, CODE 12 .plt 000002a0 00000000000010a0 00000000000010a0 000010a0 2**4 CONTENTS, ALLOC, LOAD, READONLY, CODE 13 .text 00001c34 0000000000001340 0000000000001340 00001340 2**6 CONTENTS, ALLOC, LOAD, READONLY, CODE 14 .fini 00000014 0000000000002f74 0000000000002f74 00002f74 2**2 CONTENTS, ALLOC, LOAD, READONLY, CODE 15 .rodata 00000686 0000000000002f88 0000000000002f88 00002f88 2**3 CONTENTS, ALLOC, LOAD, READONLY, DATA 16 .eh_frame_hdr 000001b4 0000000000003610 0000000000003610 00003610 2**2 CONTENTS, ALLOC, LOAD, READONLY, DATA 17 .eh_frame 000007b4 00000000000037c8 00000000000037c8 000037c8 2**3 CONTENTS, ALLOC, LOAD, READONLY, DATA 18 .init_array 00000008 000000000001fc48 000000000001fc48 0000fc48 2**3 CONTENTS, ALLOC, LOAD, DATA 19 .fini_array 00000008 000000000001fc50 000000000001fc50 0000fc50 2**3 CONTENTS, ALLOC, LOAD, DATA 20 .dynamic 00000200 000000000001fc58 000000000001fc58 0000fc58 2**3 CONTENTS, ALLOC, LOAD, DATA 21 .got 000001a8 000000000001fe58 000000000001fe58 0000fe58 2**3 CONTENTS, ALLOC, LOAD, DATA 22 .data 00000170 0000000000020000 0000000000020000 00010000 2**3 CONTENTS, ALLOC, LOAD, DATA 23 .bss 00000c68 0000000000020170 0000000000020170 00010170 2**3 ALLOC 24 .gnu_debugaltlink 00000049 0000000000000000 0000000000000000 00010170 2**0 CONTENTS, READONLY 25 .gnu_debuglink 00000034 0000000000000000 0000000000000000 000101bc 2**2 CONTENTS, READONLY ``` También indica la ubicación, el desplazamiento, los permisos, pero también el **tipo de datos** que tiene su sección. ### Secciones Meta - **Tabla de cadenas**: Contiene todas las cadenas necesarias para el archivo ELF (pero no las que realmente usa el programa). Por ejemplo, contiene nombres de secciones como `.text` o `.data`. Y si `.text` está en el desplazamiento 45 en la tabla de cadenas, usará el número **45** en el campo **nombre**. - Para encontrar dónde está la tabla de cadenas, el ELF contiene un puntero a la tabla de cadenas. - **Tabla de símbolos**: Contiene información sobre los símbolos como el nombre (desplazamiento en la tabla de cadenas), dirección, tamaño y más metadatos sobre el símbolo. ### Secciones Principales - **`.text`**: La instrucción del programa a ejecutar. - **`.data`**: Variables globales con un valor definido en el programa. - **`.bss`**: Variables globales no inicializadas (o inicializadas a cero). Las variables aquí se inicializan automáticamente a cero, evitando así que se añadan ceros innecesarios al binario. - **`.rodata`**: Variables globales constantes (sección de solo lectura). - **`.tdata`** y **`.tbss`**: Como .data y .bss cuando se utilizan variables locales de hilo (`__thread_local` en C++ o `__thread` en C). - **`.dynamic`**: Ver abajo. ## Símbolos Un símbolo es una ubicación nombrada en el programa que podría ser una función, un objeto de datos global, variables locales de hilo... ``` readelf -s lnstat Symbol table '.dynsym' contains 49 entries: Num: Value Size Type Bind Vis Ndx Name 0: 0000000000000000 0 NOTYPE LOCAL DEFAULT UND 1: 0000000000001088 0 SECTION LOCAL DEFAULT 12 .init 2: 0000000000020000 0 SECTION LOCAL DEFAULT 23 .data 3: 0000000000000000 0 FUNC GLOBAL DEFAULT UND strtok@GLIBC_2.17 (2) 4: 0000000000000000 0 FUNC GLOBAL DEFAULT UND s[...]@GLIBC_2.17 (2) 5: 0000000000000000 0 FUNC GLOBAL DEFAULT UND strlen@GLIBC_2.17 (2) 6: 0000000000000000 0 FUNC GLOBAL DEFAULT UND fputs@GLIBC_2.17 (2) 7: 0000000000000000 0 FUNC GLOBAL DEFAULT UND exit@GLIBC_2.17 (2) 8: 0000000000000000 0 FUNC GLOBAL DEFAULT UND _[...]@GLIBC_2.34 (3) 9: 0000000000000000 0 FUNC GLOBAL DEFAULT UND perror@GLIBC_2.17 (2) 10: 0000000000000000 0 NOTYPE WEAK DEFAULT UND _ITM_deregisterT[...] 11: 0000000000000000 0 FUNC WEAK DEFAULT UND _[...]@GLIBC_2.17 (2) 12: 0000000000000000 0 FUNC GLOBAL DEFAULT UND putc@GLIBC_2.17 (2) [...] ``` Cada entrada de símbolo contiene: - **Nombre** - **Atributos de enlace** (débil, local o global): Un símbolo local solo puede ser accedido por el propio programa, mientras que el símbolo global se comparte fuera del programa. Un objeto débil es, por ejemplo, una función que puede ser sobrescrita por otra diferente. - **Tipo**: NOTYPE (sin tipo especificado), OBJECT (variable de datos global), FUNC (función), SECTION (sección), FILE (archivo de código fuente para depuradores), TLS (variable local de hilo), GNU_IFUNC (función indirecta para reubicación) - **Índice de sección** donde se encuentra - **Valor** (dirección en memoria) - **Tamaño** ## Sección dinámica ``` readelf -d lnstat Dynamic section at offset 0xfc58 contains 28 entries: Tag Type Name/Value 0x0000000000000001 (NEEDED) Shared library: [libc.so.6] 0x0000000000000001 (NEEDED) Shared library: [ld-linux-aarch64.so.1] 0x000000000000000c (INIT) 0x1088 0x000000000000000d (FINI) 0x2f74 0x0000000000000019 (INIT_ARRAY) 0x1fc48 0x000000000000001b (INIT_ARRAYSZ) 8 (bytes) 0x000000000000001a (FINI_ARRAY) 0x1fc50 0x000000000000001c (FINI_ARRAYSZ) 8 (bytes) 0x000000006ffffef5 (GNU_HASH) 0x338 0x0000000000000005 (STRTAB) 0x7f0 0x0000000000000006 (SYMTAB) 0x358 0x000000000000000a (STRSZ) 510 (bytes) 0x000000000000000b (SYMENT) 24 (bytes) 0x0000000000000015 (DEBUG) 0x0 0x0000000000000003 (PLTGOT) 0x1fe58 0x0000000000000002 (PLTRELSZ) 960 (bytes) 0x0000000000000014 (PLTREL) RELA 0x0000000000000017 (JMPREL) 0xcc8 0x0000000000000007 (RELA) 0xaa0 0x0000000000000008 (RELASZ) 552 (bytes) 0x0000000000000009 (RELAENT) 24 (bytes) 0x000000000000001e (FLAGS) BIND_NOW 0x000000006ffffffb (FLAGS_1) Flags: NOW PIE 0x000000006ffffffe (VERNEED) 0xa50 0x000000006fffffff (VERNEEDNUM) 2 0x000000006ffffff0 (VERSYM) 0x9ee 0x000000006ffffff9 (RELACOUNT) 15 0x0000000000000000 (NULL) 0x0 ``` El directorio NEEDED indica que el programa **necesita cargar la biblioteca mencionada** para continuar. El directorio NEEDED se completa una vez que la **biblioteca compartida está completamente operativa y lista** para su uso. ## Reubicaciones El cargador también debe reubicar las dependencias después de haberlas cargado. Estas reubicaciones se indican en la tabla de reubicación en formatos REL o RELA y el número de reubicaciones se da en las secciones dinámicas RELSZ o RELASZ. ``` readelf -r lnstat Relocation section '.rela.dyn' at offset 0xaa0 contains 23 entries: Offset Info Type Sym. Value Sym. Name + Addend 00000001fc48 000000000403 R_AARCH64_RELATIV 1d10 00000001fc50 000000000403 R_AARCH64_RELATIV 1cc0 00000001fff0 000000000403 R_AARCH64_RELATIV 1340 000000020008 000000000403 R_AARCH64_RELATIV 20008 000000020010 000000000403 R_AARCH64_RELATIV 3330 000000020030 000000000403 R_AARCH64_RELATIV 3338 000000020050 000000000403 R_AARCH64_RELATIV 3340 000000020070 000000000403 R_AARCH64_RELATIV 3348 000000020090 000000000403 R_AARCH64_RELATIV 3350 0000000200b0 000000000403 R_AARCH64_RELATIV 3358 0000000200d0 000000000403 R_AARCH64_RELATIV 3360 0000000200f0 000000000403 R_AARCH64_RELATIV 3370 000000020110 000000000403 R_AARCH64_RELATIV 3378 000000020130 000000000403 R_AARCH64_RELATIV 3380 000000020150 000000000403 R_AARCH64_RELATIV 3388 00000001ffb8 000a00000401 R_AARCH64_GLOB_DA 0000000000000000 _ITM_deregisterTM[...] + 0 00000001ffc0 000b00000401 R_AARCH64_GLOB_DA 0000000000000000 __cxa_finalize@GLIBC_2.17 + 0 00000001ffc8 000f00000401 R_AARCH64_GLOB_DA 0000000000000000 stderr@GLIBC_2.17 + 0 00000001ffd0 001000000401 R_AARCH64_GLOB_DA 0000000000000000 optarg@GLIBC_2.17 + 0 00000001ffd8 001400000401 R_AARCH64_GLOB_DA 0000000000000000 stdout@GLIBC_2.17 + 0 00000001ffe0 001e00000401 R_AARCH64_GLOB_DA 0000000000000000 __gmon_start__ + 0 00000001ffe8 001f00000401 R_AARCH64_GLOB_DA 0000000000000000 __stack_chk_guard@GLIBC_2.17 + 0 00000001fff8 002e00000401 R_AARCH64_GLOB_DA 0000000000000000 _ITM_registerTMCl[...] + 0 Relocation section '.rela.plt' at offset 0xcc8 contains 40 entries: Offset Info Type Sym. Value Sym. Name + Addend 00000001fe70 000300000402 R_AARCH64_JUMP_SL 0000000000000000 strtok@GLIBC_2.17 + 0 00000001fe78 000400000402 R_AARCH64_JUMP_SL 0000000000000000 strtoul@GLIBC_2.17 + 0 00000001fe80 000500000402 R_AARCH64_JUMP_SL 0000000000000000 strlen@GLIBC_2.17 + 0 00000001fe88 000600000402 R_AARCH64_JUMP_SL 0000000000000000 fputs@GLIBC_2.17 + 0 00000001fe90 000700000402 R_AARCH64_JUMP_SL 0000000000000000 exit@GLIBC_2.17 + 0 00000001fe98 000800000402 R_AARCH64_JUMP_SL 0000000000000000 __libc_start_main@GLIBC_2.34 + 0 00000001fea0 000900000402 R_AARCH64_JUMP_SL 0000000000000000 perror@GLIBC_2.17 + 0 00000001fea8 000b00000402 R_AARCH64_JUMP_SL 0000000000000000 __cxa_finalize@GLIBC_2.17 + 0 00000001feb0 000c00000402 R_AARCH64_JUMP_SL 0000000000000000 putc@GLIBC_2.17 + 0 00000001feb8 000d00000402 R_AARCH64_JUMP_SL 0000000000000000 opendir@GLIBC_2.17 + 0 00000001fec0 000e00000402 R_AARCH64_JUMP_SL 0000000000000000 fputc@GLIBC_2.17 + 0 00000001fec8 001100000402 R_AARCH64_JUMP_SL 0000000000000000 snprintf@GLIBC_2.17 + 0 00000001fed0 001200000402 R_AARCH64_JUMP_SL 0000000000000000 __snprintf_chk@GLIBC_2.17 + 0 00000001fed8 001300000402 R_AARCH64_JUMP_SL 0000000000000000 malloc@GLIBC_2.17 + 0 00000001fee0 001500000402 R_AARCH64_JUMP_SL 0000000000000000 gettimeofday@GLIBC_2.17 + 0 00000001fee8 001600000402 R_AARCH64_JUMP_SL 0000000000000000 sleep@GLIBC_2.17 + 0 00000001fef0 001700000402 R_AARCH64_JUMP_SL 0000000000000000 __vfprintf_chk@GLIBC_2.17 + 0 00000001fef8 001800000402 R_AARCH64_JUMP_SL 0000000000000000 calloc@GLIBC_2.17 + 0 00000001ff00 001900000402 R_AARCH64_JUMP_SL 0000000000000000 rewind@GLIBC_2.17 + 0 00000001ff08 001a00000402 R_AARCH64_JUMP_SL 0000000000000000 strdup@GLIBC_2.17 + 0 00000001ff10 001b00000402 R_AARCH64_JUMP_SL 0000000000000000 closedir@GLIBC_2.17 + 0 00000001ff18 001c00000402 R_AARCH64_JUMP_SL 0000000000000000 __stack_chk_fail@GLIBC_2.17 + 0 00000001ff20 001d00000402 R_AARCH64_JUMP_SL 0000000000000000 strrchr@GLIBC_2.17 + 0 00000001ff28 001e00000402 R_AARCH64_JUMP_SL 0000000000000000 __gmon_start__ + 0 00000001ff30 002000000402 R_AARCH64_JUMP_SL 0000000000000000 abort@GLIBC_2.17 + 0 00000001ff38 002100000402 R_AARCH64_JUMP_SL 0000000000000000 feof@GLIBC_2.17 + 0 00000001ff40 002200000402 R_AARCH64_JUMP_SL 0000000000000000 getopt_long@GLIBC_2.17 + 0 00000001ff48 002300000402 R_AARCH64_JUMP_SL 0000000000000000 __fprintf_chk@GLIBC_2.17 + 0 00000001ff50 002400000402 R_AARCH64_JUMP_SL 0000000000000000 strcmp@GLIBC_2.17 + 0 00000001ff58 002500000402 R_AARCH64_JUMP_SL 0000000000000000 free@GLIBC_2.17 + 0 00000001ff60 002600000402 R_AARCH64_JUMP_SL 0000000000000000 readdir64@GLIBC_2.17 + 0 00000001ff68 002700000402 R_AARCH64_JUMP_SL 0000000000000000 strndup@GLIBC_2.17 + 0 00000001ff70 002800000402 R_AARCH64_JUMP_SL 0000000000000000 strchr@GLIBC_2.17 + 0 00000001ff78 002900000402 R_AARCH64_JUMP_SL 0000000000000000 fwrite@GLIBC_2.17 + 0 00000001ff80 002a00000402 R_AARCH64_JUMP_SL 0000000000000000 fflush@GLIBC_2.17 + 0 00000001ff88 002b00000402 R_AARCH64_JUMP_SL 0000000000000000 fopen64@GLIBC_2.17 + 0 00000001ff90 002c00000402 R_AARCH64_JUMP_SL 0000000000000000 __isoc99_sscanf@GLIBC_2.17 + 0 00000001ff98 002d00000402 R_AARCH64_JUMP_SL 0000000000000000 strncpy@GLIBC_2.17 + 0 00000001ffa0 002f00000402 R_AARCH64_JUMP_SL 0000000000000000 __assert_fail@GLIBC_2.17 + 0 00000001ffa8 003000000402 R_AARCH64_JUMP_SL 0000000000000000 fgets@GLIBC_2.17 + 0 ``` ### Relocaciones Estáticas Si el **programa se carga en un lugar diferente** de la dirección preferida (generalmente 0x400000) porque la dirección ya está en uso o debido a **ASLR** o cualquier otra razón, una relocación estática **corrige punteros** que tenían valores esperando que el binario se cargara en la dirección preferida. Por ejemplo, cualquier sección de tipo `R_AARCH64_RELATIV` debería haber modificado la dirección en el sesgo de relocación más el valor del aditivo. ### Relocaciones Dinámicas y GOT La relocación también podría hacer referencia a un símbolo externo (como una función de una dependencia). Como la función malloc de libC. Entonces, el cargador al cargar libC en una dirección, al verificar dónde se carga la función malloc, escribirá esta dirección en la tabla GOT (Tabla de Desplazamiento Global) (indicado en la tabla de relocación) donde debería especificarse la dirección de malloc. ### Tabla de Enlace de Procedimientos La sección PLT permite realizar enlace perezoso, lo que significa que la resolución de la ubicación de una función se realizará la primera vez que se acceda a ella. Así que cuando un programa llama a malloc, en realidad llama a la ubicación correspondiente de `malloc` en el PLT (`malloc@plt`). La primera vez que se llama, resuelve la dirección de `malloc` y la almacena, de modo que la próxima vez que se llame a `malloc`, se utiliza esa dirección en lugar del código PLT. ## Inicialización del Programa Después de que el programa ha sido cargado, es hora de que se ejecute. Sin embargo, el primer código que se ejecuta **no siempre es la función `main`**. Esto se debe a que, por ejemplo, en C++ si una **variable global es un objeto de una clase**, este objeto debe ser **inicializado** **antes** de que se ejecute main, como en: ```cpp #include // g++ autoinit.cpp -o autoinit class AutoInit { public: AutoInit() { printf("Hello AutoInit!\n"); } ~AutoInit() { printf("Goodbye AutoInit!\n"); } }; AutoInit autoInit; int main() { printf("Main\n"); return 0; } ``` Tenga en cuenta que estas variables globales se encuentran en `.data` o `.bss`, pero en las listas `__CTOR_LIST__` y `__DTOR_LIST__` se almacenan los objetos para inicializar y destruir con el fin de hacer un seguimiento de ellos. Desde el código C, es posible obtener el mismo resultado utilizando las extensiones de GNU: ```c __attributte__((constructor)) //Add a constructor to execute before __attributte__((destructor)) //Add to the destructor list ``` Desde la perspectiva de un compilador, para ejecutar estas acciones antes y después de que se ejecute la función `main`, es posible crear una función `init` y una función `fini` que se referenciarían en la sección dinámica como **`INIT`** y **`FIN`**. y se colocan en las secciones `init` y `fini` del ELF. La otra opción, como se mencionó, es referenciar las listas **`__CTOR_LIST__`** y **`__DTOR_LIST__`** en las entradas **`INIT_ARRAY`** y **`FINI_ARRAY`** en la sección dinámica y la longitud de estas se indica con **`INIT_ARRAYSZ`** y **`FINI_ARRAYSZ`**. Cada entrada es un puntero a función que se llamará sin argumentos. Además, también es posible tener un **`PREINIT_ARRAY`** con **punteros** que se ejecutarán **antes** de los punteros de **`INIT_ARRAY`**. ### Orden de Inicialización 1. El programa se carga en memoria, las variables globales estáticas se inicializan en **`.data`** y las no inicializadas se ponen a cero en **`.bss`**. 2. Todas las **dependencias** para el programa o bibliotecas son **inicializadas** y se ejecuta el **vinculador dinámico**. 3. Se ejecutan las funciones de **`PREINIT_ARRAY`**. 4. Se ejecutan las funciones de **`INIT_ARRAY`**. 5. Si hay una entrada **`INIT`**, se llama. 6. Si es una biblioteca, dlopen termina aquí; si es un programa, es hora de llamar al **punto de entrada real** (función `main`). ## Almacenamiento Local por Hilo (TLS) Se definen utilizando la palabra clave **`__thread_local`** en C++ o la extensión de GNU **`__thread`**. Cada hilo mantendrá una ubicación única para esta variable, por lo que solo el hilo puede acceder a su variable. Cuando se utiliza esto, las secciones **`.tdata`** y **`.tbss`** se utilizan en el ELF. Que son como `.data` (inicializado) y `.bss` (no inicializado) pero para TLS. Cada variable tendrá una entrada en el encabezado TLS que especifica el tamaño y el desplazamiento TLS, que es el desplazamiento que utilizará en el área de datos local del hilo. El `__TLS_MODULE_BASE` es un símbolo utilizado para referirse a la dirección base del almacenamiento local por hilo y apunta al área en memoria que contiene todos los datos locales por hilo de un módulo. {{#include ../../banners/hacktricks-training.md}}