# POSIX CPU Timers TOCTOU race (CVE-2025-38352) {{#include ../../banners/hacktricks-training.md}} Ця сторінка документує TOCTOU race condition у Linux/Android POSIX CPU timers, який може пошкодити стан таймера і призвести до падіння ядра, а за певних обставин може бути спрямований на privilege escalation. - Затронутий компонент: kernel/time/posix-cpu-timers.c - Примітив: expiry vs deletion race under task exit - Залежить від конфігурації: CONFIG_POSIX_CPU_TIMERS_TASK_WORK=n (IRQ-context expiry path) Короткий огляд внутрішньої будови (relevant for exploitation) - Три CPU годинники відповідають за облік таймерів через cpu_clock_sample(): - CPUCLOCK_PROF: utime + stime - CPUCLOCK_VIRT: utime only - CPUCLOCK_SCHED: task_sched_runtime() - Створення таймера підключає таймер до task/pid і ініціалізує timerqueue nodes: ```c static int posix_cpu_timer_create(struct k_itimer *new_timer) { struct pid *pid; rcu_read_lock(); pid = pid_for_clock(new_timer->it_clock, false); if (!pid) { rcu_read_unlock(); return -EINVAL; } new_timer->kclock = &clock_posix_cpu; timerqueue_init(&new_timer->it.cpu.node); new_timer->it.cpu.pid = get_pid(pid); rcu_read_unlock(); return 0; } ``` - Армування вставляє в per-base timerqueue і може оновити next-expiry cache: ```c static void arm_timer(struct k_itimer *timer, struct task_struct *p) { struct posix_cputimer_base *base = timer_base(timer, p); struct cpu_timer *ctmr = &timer->it.cpu; u64 newexp = cpu_timer_getexpires(ctmr); if (!cpu_timer_enqueue(&base->tqhead, ctmr)) return; if (newexp < base->nextevt) base->nextevt = newexp; } ``` - Швидкий шлях уникає дорогої обробки, якщо тільки кешовані терміни не вказують на можливе спрацьовування: ```c static inline bool fastpath_timer_check(struct task_struct *tsk) { struct posix_cputimers *pct = &tsk->posix_cputimers; if (!expiry_cache_is_inactive(pct)) { u64 samples[CPUCLOCK_MAX]; task_sample_cputime(tsk, samples); if (task_cputimers_expired(samples, pct)) return true; } return false; } ``` - Expiration збирає прострочені таймери, позначає їх як спрацьовані, переміщує їх з черги; фактична доставка відкладається: ```c #define MAX_COLLECTED 20 static u64 collect_timerqueue(struct timerqueue_head *head, struct list_head *firing, u64 now) { struct timerqueue_node *next; int i = 0; while ((next = timerqueue_getnext(head))) { struct cpu_timer *ctmr = container_of(next, struct cpu_timer, node); u64 expires = cpu_timer_getexpires(ctmr); if (++i == MAX_COLLECTED || now < expires) return expires; ctmr->firing = 1; // critical state rcu_assign_pointer(ctmr->handling, current); cpu_timer_dequeue(ctmr); list_add_tail(&ctmr->elist, firing); } return U64_MAX; } ``` Два режими обробки спрацьовування - CONFIG_POSIX_CPU_TIMERS_TASK_WORK=y: спрацьовування відкладається через task_work у цільовому task - CONFIG_POSIX_CPU_TIMERS_TASK_WORK=n: спрацьовування обробляється безпосередньо в IRQ context ```c void run_posix_cpu_timers(void) { struct task_struct *tsk = current; __run_posix_cpu_timers(tsk); } #ifdef CONFIG_POSIX_CPU_TIMERS_TASK_WORK static inline void __run_posix_cpu_timers(struct task_struct *tsk) { if (WARN_ON_ONCE(tsk->posix_cputimers_work.scheduled)) return; tsk->posix_cputimers_work.scheduled = true; task_work_add(tsk, &tsk->posix_cputimers_work.work, TWA_RESUME); } #else static inline void __run_posix_cpu_timers(struct task_struct *tsk) { lockdep_posixtimer_enter(); handle_posix_cpu_timers(tsk); // IRQ-context path lockdep_posixtimer_exit(); } #endif ``` У шляху в контексті IRQ список спрацьовувань обробляється поза sighand ```c static void handle_posix_cpu_timers(struct task_struct *tsk) { struct k_itimer *timer, *next; unsigned long flags, start; LIST_HEAD(firing); if (!lock_task_sighand(tsk, &flags)) return; // may fail on exit do { start = READ_ONCE(jiffies); barrier(); check_thread_timers(tsk, &firing); check_process_timers(tsk, &firing); } while (!posix_cpu_timers_enable_work(tsk, start)); unlock_task_sighand(tsk, &flags); // race window opens here list_for_each_entry_safe(timer, next, &firing, it.cpu.elist) { int cpu_firing; spin_lock(&timer->it_lock); list_del_init(&timer->it.cpu.elist); cpu_firing = timer->it.cpu.firing; // read then reset timer->it.cpu.firing = 0; if (likely(cpu_firing >= 0)) cpu_timer_fire(timer); rcu_assign_pointer(timer->it.cpu.handling, NULL); spin_unlock(&timer->it_lock); } } ``` Root cause: TOCTOU between IRQ-time expiry and concurrent deletion under task exit Preconditions - CONFIG_POSIX_CPU_TIMERS_TASK_WORK is disabled (IRQ path in use) - Цільова задача завершується, але ще не повністю зібрана (reaped) - Інший потік одночасно викликає posix_cpu_timer_del() для того ж таймера Sequence 1) update_process_times() triggers run_posix_cpu_timers() in IRQ context for the exiting task. 2) collect_timerqueue() sets ctmr->firing = 1 and moves the timer to the temporary firing list. 3) handle_posix_cpu_timers() drops sighand via unlock_task_sighand() to deliver timers outside the lock. 4) Негайно після розблокування задача, що завершується, може бути зібрана (reaped); інший потік виконує posix_cpu_timer_del(). 5) У цьому вікні posix_cpu_timer_del() може не змогти отримати стан через cpu_timer_task_rcu()/lock_task_sighand() і тому пропустити звичайну перевірку in-flight, яка дивиться timer->it.cpu.firing. Видалення відбувається так, ніби таймер не firing, пошкоджуючи стан під час обробки спрацювання, що призводить до крашів/UB. Why TASK_WORK mode is safe by design - With CONFIG_POSIX_CPU_TIMERS_TASK_WORK=y, expiry is deferred to task_work; exit_task_work runs before exit_notify, so the IRQ-time overlap with reaping does not occur. - Навіть тоді, якщо задача вже завершується, task_work_add() не виконується; перевірка exit_state робить обидва режими консистентними. Fix (Android common kernel) and rationale - Add an early return if current task is exiting, gating all processing: ```c // kernel/time/posix-cpu-timers.c (Android common kernel commit 157f357d50b5038e5eaad0b2b438f923ac40afeb) if (tsk->exit_state) return; ``` - Це запобігає входженню в handle_posix_cpu_timers() для задач, що виходять, усуваючи вікно, у якому posix_cpu_timer_del() може пропустити it.cpu.firing і змагатися з обробкою expiry. Impact - Пошкодження пам'яті ядра в структурах таймера під час одночасного expiry/видалення може призвести до негайних аварій (DoS) і є потужним примітивом для ескалації привілеїв через можливості довільної маніпуляції станом ядра. Triggering the bug (safe, reproducible conditions) Build/config - Переконайтеся, що CONFIG_POSIX_CPU_TIMERS_TASK_WORK=n і використовуйте ядро без exit_state gating fix. Runtime strategy - Орієнтуйтеся на потік, який збирається завершитися, і прикріпіть до нього CPU timer (потоковий або процесний годинник): - Для per-thread: timer_create(CLOCK_THREAD_CPUTIME_ID, ...) - Для process-wide: timer_create(CLOCK_PROCESS_CPUTIME_ID, ...) - Установіть дуже короткий початковий термін і малий інтервал, щоб максимізувати входження в IRQ-path: ```c static timer_t t; static void setup_cpu_timer(void) { struct sigevent sev = {0}; sev.sigev_notify = SIGEV_SIGNAL; // delivery type not critical for the race sev.sigev_signo = SIGUSR1; if (timer_create(CLOCK_THREAD_CPUTIME_ID, &sev, &t)) perror("timer_create"); struct itimerspec its = {0}; its.it_value.tv_nsec = 1; // fire ASAP its.it_interval.tv_nsec = 1; // re-fire if (timer_settime(t, 0, &its, NULL)) perror("timer_settime"); } ``` - З сусіднього потоку одночасно видаліть той самий таймер, поки цільовий потік завершується: ```c void *deleter(void *arg) { for (;;) (void)timer_delete(t); // hammer delete in a loop } ``` - Посилювачі гонок: висока частота тіку планувальника, навантаження CPU, повторювані цикли виходу/повторного створення потоків. Збій зазвичай проявляється, коли posix_cpu_timer_del() не помічає спрацьовування через невдалий пошук/блокування task одразу після unlock_task_sighand(). Detection and hardening - Mitigation: застосувати exit_state guard; за можливості віддавати перевагу увімкненню CONFIG_POSIX_CPU_TIMERS_TASK_WORK. - Observability: додати tracepoints/WARN_ONCE навколо unlock_task_sighand()/posix_cpu_timer_del(); сповіщати, коли it.cpu.firing==1 спостерігається разом з невдалим cpu_timer_task_rcu()/lock_task_sighand(); стежити за невідповідностями timerqueue під час виходу задачі. Audit hotspots (for reviewers) - update_process_times() → run_posix_cpu_timers() (IRQ) - __run_posix_cpu_timers() selection (TASK_WORK vs IRQ path) - collect_timerqueue(): sets ctmr->firing and moves nodes - handle_posix_cpu_timers(): drops sighand before firing loop - posix_cpu_timer_del(): покладається на it.cpu.firing для виявлення спрацьовування в польоті; ця перевірка пропускається, коли пошук/блокування task не вдається під час виходу/збирання Notes for exploitation research - The disclosed behavior is a reliable kernel crash primitive; turning it into privilege escalation typically needs an additional controllable overlap (object lifetime or write-what-where influence) beyond the scope of this summary. Treat any PoC as potentially destabilizing and run only in emulators/VMs. ## References - [Race Against Time in the Kernel’s Clockwork (StreyPaws)](https://streypaws.github.io/posts/Race-Against-Time-in-the-Kernel-Clockwork/) - [Android security bulletin – September 2025](https://source.android.com/docs/security/bulletin/2025-09-01) - [Android common kernel patch commit 157f357d50b5…](https://android.googlesource.com/kernel/common/+/157f357d50b5038e5eaad0b2b438f923ac40afeb%5E%21/#F0) {{#include ../../banners/hacktricks-training.md}}