# malloc & sysmalloc {{#include ../../../banners/hacktricks-training.md}} ## Riepilogo dell'Ordine di Allocazione (Nessun controllo è spiegato in questo riepilogo e alcuni casi sono stati omessi per brevità) 1. `__libc_malloc` cerca di ottenere un chunk dal tcache, se non riesce chiama `_int_malloc` 2. `_int_malloc` : 1. Cerca di generare l'arena se non ce n'è una 2. Se c'è un chunk di fast bin della dimensione corretta, usalo 1. Riempire il tcache con altri chunk veloci 3. Se c'è un chunk di small bin della dimensione corretta, usalo 1. Riempire il tcache con altri chunk di quella dimensione 4. Se la dimensione richiesta non è per small bins, consolidare il fast bin in unsorted bin 5. Controlla l'unsorted bin, usa il primo chunk con spazio sufficiente 1. Se il chunk trovato è più grande, dividilo per restituire una parte e aggiungere il resto all'unsorted bin 2. Se un chunk è della stessa dimensione di quella richiesta, usalo per riempire il tcache invece di restituirlo (fino a quando il tcache è pieno, poi restituisci il successivo) 3. Per ogni chunk di dimensione più piccola controllato, mettilo nel suo rispettivo small o large bin 6. Controlla il large bin nell'indice della dimensione richiesta 1. Inizia a cercare dal primo chunk che è più grande della dimensione richiesta, se ne trovi uno restituiscilo e aggiungi i resti al small bin 7. Controlla i large bins dagli indici successivi fino alla fine 1. Dal prossimo indice più grande controlla per qualsiasi chunk, dividi il primo chunk trovato per usarlo per la dimensione richiesta e aggiungi il resto all'unsorted bin 8. Se non viene trovato nulla nei bins precedenti, prendi un chunk dal top chunk 9. Se il top chunk non era abbastanza grande, ingrandiscilo con `sysmalloc` ## \_\_libc_malloc La funzione `malloc` chiama effettivamente `__libc_malloc`. Questa funzione controllerà il tcache per vedere se c'è un chunk disponibile della dimensione desiderata. Se c'è, lo utilizzerà e se non c'è controllerà se è un singolo thread e in tal caso chiamerà `_int_malloc` nell'arena principale, e se non lo è chiamerà `_int_malloc` nell'arena del thread.
__libc_malloc codice ```c // From https://github.com/bminor/glibc/blob/master/malloc/malloc.c #if IS_IN (libc) void * __libc_malloc (size_t bytes) { mstate ar_ptr; void *victim; _Static_assert (PTRDIFF_MAX <= SIZE_MAX / 2, "PTRDIFF_MAX is not more than half of SIZE_MAX"); if (!__malloc_initialized) ptmalloc_init (); #if USE_TCACHE /* int_free also calls request2size, be careful to not pad twice. */ size_t tbytes = checked_request2size (bytes); if (tbytes == 0) { __set_errno (ENOMEM); return NULL; } size_t tc_idx = csize2tidx (tbytes); MAYBE_INIT_TCACHE (); DIAG_PUSH_NEEDS_COMMENT; if (tc_idx < mp_.tcache_bins && tcache != NULL && tcache->counts[tc_idx] > 0) { victim = tcache_get (tc_idx); return tag_new_usable (victim); } DIAG_POP_NEEDS_COMMENT; #endif if (SINGLE_THREAD_P) { victim = tag_new_usable (_int_malloc (&main_arena, bytes)); assert (!victim || chunk_is_mmapped (mem2chunk (victim)) || &main_arena == arena_for_chunk (mem2chunk (victim))); return victim; } arena_get (ar_ptr, bytes); victim = _int_malloc (ar_ptr, bytes); /* Retry with another arena only if we were able to find a usable arena before. */ if (!victim && ar_ptr != NULL) { LIBC_PROBE (memory_malloc_retry, 1, bytes); ar_ptr = arena_get_retry (ar_ptr, bytes); victim = _int_malloc (ar_ptr, bytes); } if (ar_ptr != NULL) __libc_lock_unlock (ar_ptr->mutex); victim = tag_new_usable (victim); assert (!victim || chunk_is_mmapped (mem2chunk (victim)) || ar_ptr == arena_for_chunk (mem2chunk (victim))); return victim; } ```
Nota come etichetterà sempre il puntatore restituito con `tag_new_usable`, dal codice: ```c void *tag_new_usable (void *ptr) Allocate a new random color and use it to color the user region of a chunk; this may include data from the subsequent chunk's header if tagging is sufficiently fine grained. Returns PTR suitably recolored for accessing the memory there. ``` ## \_int_malloc Questa è la funzione che alloca memoria utilizzando gli altri bin e il top chunk. - Inizio Inizia definendo alcune variabili e ottenendo la dimensione reale che lo spazio di memoria richiesto deve avere:
_int_malloc inizio ```c // From https://github.com/bminor/glibc/blob/f942a732d37a96217ef828116ebe64a644db18d7/malloc/malloc.c#L3847 static void * _int_malloc (mstate av, size_t bytes) { INTERNAL_SIZE_T nb; /* normalized request size */ unsigned int idx; /* associated bin index */ mbinptr bin; /* associated bin */ mchunkptr victim; /* inspected/selected chunk */ INTERNAL_SIZE_T size; /* its size */ int victim_index; /* its bin index */ mchunkptr remainder; /* remainder from a split */ unsigned long remainder_size; /* its size */ unsigned int block; /* bit map traverser */ unsigned int bit; /* bit map traverser */ unsigned int map; /* current word of binmap */ mchunkptr fwd; /* misc temp for linking */ mchunkptr bck; /* misc temp for linking */ #if USE_TCACHE size_t tcache_unsorted_count; /* count of unsorted chunks processed */ #endif /* Convert request size to internal form by adding SIZE_SZ bytes overhead plus possibly more to obtain necessary alignment and/or to obtain a size of at least MINSIZE, the smallest allocatable size. Also, checked_request2size returns false for request sizes that are so large that they wrap around zero when padded and aligned. */ nb = checked_request2size (bytes); if (nb == 0) { __set_errno (ENOMEM); return NULL; } ```
### Arena Nel caso improbabile in cui non ci siano arene utilizzabili, utilizza `sysmalloc` per ottenere un chunk da `mmap`:
_int_malloc non arena ```c // From https://github.com/bminor/glibc/blob/f942a732d37a96217ef828116ebe64a644db18d7/malloc/malloc.c#L3885C3-L3893C6 /* There are no usable arenas. Fall back to sysmalloc to get a chunk from mmap. */ if (__glibc_unlikely (av == NULL)) { void *p = sysmalloc (nb, av); if (p != NULL) alloc_perturb (p, bytes); return p; } ```
### Fast Bin Se la dimensione necessaria è all'interno delle dimensioni dei Fast Bins, prova a utilizzare un chunk dal fast bin. Fondamentalmente, in base alla dimensione, troverà l'indice del fast bin dove dovrebbero trovarsi i chunk validi e, se presenti, restituirà uno di essi.\ Inoltre, se tcache è abilitato, **riempirà il tcache bin di quella dimensione con i fast bins**. Durante l'esecuzione di queste azioni, vengono eseguiti alcuni controlli di sicurezza: - Se il chunk è disallineato: `malloc(): unaligned fastbin chunk detected 2` - Se il chunk successivo è disallineato: `malloc(): unaligned fastbin chunk detected` - Se il chunk restituito ha una dimensione che non è corretta a causa del suo indice nel fast bin: `malloc(): memory corruption (fast)` - Se un chunk utilizzato per riempire il tcache è disallineato: `malloc(): unaligned fastbin chunk detected 3`
_int_malloc fast bin ```c // From https://github.com/bminor/glibc/blob/f942a732d37a96217ef828116ebe64a644db18d7/malloc/malloc.c#L3895C3-L3967C6 /* If the size qualifies as a fastbin, first check corresponding bin. This code is safe to execute even if av is not yet initialized, so we can try it without checking, which saves some time on this fast path. */ #define REMOVE_FB(fb, victim, pp) \ do \ { \ victim = pp; \ if (victim == NULL) \ break; \ pp = REVEAL_PTR (victim->fd); \ if (__glibc_unlikely (pp != NULL && misaligned_chunk (pp))) \ malloc_printerr ("malloc(): unaligned fastbin chunk detected"); \ } \ while ((pp = catomic_compare_and_exchange_val_acq (fb, pp, victim)) \ != victim); \ if ((unsigned long) (nb) <= (unsigned long) (get_max_fast ())) { idx = fastbin_index (nb); mfastbinptr *fb = &fastbin (av, idx); mchunkptr pp; victim = *fb; if (victim != NULL) { if (__glibc_unlikely (misaligned_chunk (victim))) malloc_printerr ("malloc(): unaligned fastbin chunk detected 2"); if (SINGLE_THREAD_P) *fb = REVEAL_PTR (victim->fd); else REMOVE_FB (fb, pp, victim); if (__glibc_likely (victim != NULL)) { size_t victim_idx = fastbin_index (chunksize (victim)); if (__builtin_expect (victim_idx != idx, 0)) malloc_printerr ("malloc(): memory corruption (fast)"); check_remalloced_chunk (av, victim, nb); #if USE_TCACHE /* While we're here, if we see other chunks of the same size, stash them in the tcache. */ size_t tc_idx = csize2tidx (nb); if (tcache != NULL && tc_idx < mp_.tcache_bins) { mchunkptr tc_victim; /* While bin not empty and tcache not full, copy chunks. */ while (tcache->counts[tc_idx] < mp_.tcache_count && (tc_victim = *fb) != NULL) { if (__glibc_unlikely (misaligned_chunk (tc_victim))) malloc_printerr ("malloc(): unaligned fastbin chunk detected 3"); if (SINGLE_THREAD_P) *fb = REVEAL_PTR (tc_victim->fd); else { REMOVE_FB (fb, pp, tc_victim); if (__glibc_unlikely (tc_victim == NULL)) break; } tcache_put (tc_victim, tc_idx); } } #endif void *p = chunk2mem (victim); alloc_perturb (p, bytes); return p; } } } ```
### Small Bin Come indicato in un commento, i piccoli bin contengono una dimensione per indice, quindi controllare se un chunk valido è disponibile è molto veloce, quindi dopo i fast bin, si controllano i piccoli bin. Il primo controllo è per scoprire se la dimensione richiesta potrebbe trovarsi all'interno di un piccolo bin. In tal caso, ottenere il **indice** corrispondente all'interno del smallbin e vedere se c'è **qualche chunk disponibile**. Poi, viene eseguito un controllo di sicurezza verificando: - se `victim->bk->fd = victim`. Per vedere che entrambi i chunk siano correttamente collegati. In tal caso, il chunk **ottiene il bit `inuse`,** la lista doppiamente collegata viene sistemata in modo che questo chunk scompaia da essa (poiché verrà utilizzato), e il bit non principale dell'arena viene impostato se necessario. Infine, **riempi l'indice tcache della dimensione richiesta** con altri chunk all'interno del piccolo bin (se presenti).
_int_malloc small bin ```c // From https://github.com/bminor/glibc/blob/f942a732d37a96217ef828116ebe64a644db18d7/malloc/malloc.c#L3895C3-L3967C6 /* If a small request, check regular bin. Since these "smallbins" hold one size each, no searching within bins is necessary. (For a large request, we need to wait until unsorted chunks are processed to find best fit. But for small ones, fits are exact anyway, so we can check now, which is faster.) */ if (in_smallbin_range (nb)) { idx = smallbin_index (nb); bin = bin_at (av, idx); if ((victim = last (bin)) != bin) { bck = victim->bk; if (__glibc_unlikely (bck->fd != victim)) malloc_printerr ("malloc(): smallbin double linked list corrupted"); set_inuse_bit_at_offset (victim, nb); bin->bk = bck; bck->fd = bin; if (av != &main_arena) set_non_main_arena (victim); check_malloced_chunk (av, victim, nb); #if USE_TCACHE /* While we're here, if we see other chunks of the same size, stash them in the tcache. */ size_t tc_idx = csize2tidx (nb); if (tcache != NULL && tc_idx < mp_.tcache_bins) { mchunkptr tc_victim; /* While bin not empty and tcache not full, copy chunks over. */ while (tcache->counts[tc_idx] < mp_.tcache_count && (tc_victim = last (bin)) != bin) { if (tc_victim != 0) { bck = tc_victim->bk; set_inuse_bit_at_offset (tc_victim, nb); if (av != &main_arena) set_non_main_arena (tc_victim); bin->bk = bck; bck->fd = bin; tcache_put (tc_victim, tc_idx); } } } #endif void *p = chunk2mem (victim); alloc_perturb (p, bytes); return p; } } ```
### malloc_consolidate Se non era un piccolo chunk, è un grande chunk, e in questo caso **`malloc_consolidate`** viene chiamato per evitare la frammentazione della memoria.
chiamata a malloc_consolidate ```c /* If this is a large request, consolidate fastbins before continuing. While it might look excessive to kill all fastbins before even seeing if there is space available, this avoids fragmentation problems normally associated with fastbins. Also, in practice, programs tend to have runs of either small or large requests, but less often mixtures, so consolidation is not invoked all that often in most programs. And the programs that it is called frequently in otherwise tend to fragment. */ else { idx = largebin_index (nb); if (atomic_load_relaxed (&av->have_fastchunks)) malloc_consolidate (av); } ```
La funzione malloc consolidate rimuove fondamentalmente i chunk dal fast bin e li colloca nell'unsorted bin. Dopo il prossimo malloc, questi chunk saranno organizzati nei rispettivi small/fast bins. Nota che se durante la rimozione di questi chunk, vengono trovati chunk precedenti o successivi che non sono in uso, saranno **unlinked e uniti** prima di collocare il chunk finale nell'**unsorted** bin. Per ogni chunk del fast bin vengono eseguiti un paio di controlli di sicurezza: - Se il chunk è disallineato attiva: `malloc_consolidate(): unaligned fastbin chunk detected` - Se il chunk ha una dimensione diversa da quella che dovrebbe avere a causa dell'indice in cui si trova: `malloc_consolidate(): invalid chunk size` - Se il chunk precedente non è in uso e il chunk precedente ha una dimensione diversa da quella indicata da `prev_chunk`: `corrupted size vs. prev_size in fastbins`
funzione malloc_consolidate ```c // https://github.com/bminor/glibc/blob/f942a732d37a96217ef828116ebe64a644db18d7/malloc/malloc.c#L4810C1-L4905C2 static void malloc_consolidate(mstate av) { mfastbinptr* fb; /* current fastbin being consolidated */ mfastbinptr* maxfb; /* last fastbin (for loop control) */ mchunkptr p; /* current chunk being consolidated */ mchunkptr nextp; /* next chunk to consolidate */ mchunkptr unsorted_bin; /* bin header */ mchunkptr first_unsorted; /* chunk to link to */ /* These have same use as in free() */ mchunkptr nextchunk; INTERNAL_SIZE_T size; INTERNAL_SIZE_T nextsize; INTERNAL_SIZE_T prevsize; int nextinuse; atomic_store_relaxed (&av->have_fastchunks, false); unsorted_bin = unsorted_chunks(av); /* Remove each chunk from fast bin and consolidate it, placing it then in unsorted bin. Among other reasons for doing this, placing in unsorted bin avoids needing to calculate actual bins until malloc is sure that chunks aren't immediately going to be reused anyway. */ maxfb = &fastbin (av, NFASTBINS - 1); fb = &fastbin (av, 0); do { p = atomic_exchange_acquire (fb, NULL); if (p != 0) { do { { if (__glibc_unlikely (misaligned_chunk (p))) malloc_printerr ("malloc_consolidate(): " "unaligned fastbin chunk detected"); unsigned int idx = fastbin_index (chunksize (p)); if ((&fastbin (av, idx)) != fb) malloc_printerr ("malloc_consolidate(): invalid chunk size"); } check_inuse_chunk(av, p); nextp = REVEAL_PTR (p->fd); /* Slightly streamlined version of consolidation code in free() */ size = chunksize (p); nextchunk = chunk_at_offset(p, size); nextsize = chunksize(nextchunk); if (!prev_inuse(p)) { prevsize = prev_size (p); size += prevsize; p = chunk_at_offset(p, -((long) prevsize)); if (__glibc_unlikely (chunksize(p) != prevsize)) malloc_printerr ("corrupted size vs. prev_size in fastbins"); unlink_chunk (av, p); } if (nextchunk != av->top) { nextinuse = inuse_bit_at_offset(nextchunk, nextsize); if (!nextinuse) { size += nextsize; unlink_chunk (av, nextchunk); } else clear_inuse_bit_at_offset(nextchunk, 0); first_unsorted = unsorted_bin->fd; unsorted_bin->fd = p; first_unsorted->bk = p; if (!in_smallbin_range (size)) { p->fd_nextsize = NULL; p->bk_nextsize = NULL; } set_head(p, size | PREV_INUSE); p->bk = unsorted_bin; p->fd = first_unsorted; set_foot(p, size); } else { size += nextsize; set_head(p, size | PREV_INUSE); av->top = p; } } while ( (p = nextp) != 0); } } while (fb++ != maxfb); } ```
### Unsorted bin È tempo di controllare l'unsorted bin per un potenziale chunk valido da utilizzare. #### Start Questo inizia con un grande ciclo for che attraverserà l'unsorted bin nella direzione `bk` fino ad arrivare alla fine (la struttura arena) con `while ((victim = unsorted_chunks (av)->bk) != unsorted_chunks (av))` Inoltre, vengono eseguiti alcuni controlli di sicurezza ogni volta che un nuovo chunk viene considerato: - Se la dimensione del chunk è strana (troppo piccola o troppo grande): `malloc(): invalid size (unsorted)` - Se la dimensione del chunk successivo è strana (troppo piccola o troppo grande): `malloc(): invalid next size (unsorted)` - Se la dimensione precedente indicata dal chunk successivo differisce dalla dimensione del chunk: `malloc(): mismatching next->prev_size (unsorted)` - Se non `victim->bck->fd == victim` o non `victim->fd == av` (arena): `malloc(): unsorted double linked list corrupted` - Poiché stiamo sempre controllando l'ultimo, il suo `fd` dovrebbe sempre puntare alla struttura arena. - Se il chunk successivo non indica che il precedente è in uso: `malloc(): invalid next->prev_inuse (unsorted)`
_int_malloc unsorted bin start ```c /* Process recently freed or remaindered chunks, taking one only if it is exact fit, or, if this a small request, the chunk is remainder from the most recent non-exact fit. Place other traversed chunks in bins. Note that this step is the only place in any routine where chunks are placed in bins. The outer loop here is needed because we might not realize until near the end of malloc that we should have consolidated, so must do so and retry. This happens at most once, and only when we would otherwise need to expand memory to service a "small" request. */ #if USE_TCACHE INTERNAL_SIZE_T tcache_nb = 0; size_t tc_idx = csize2tidx (nb); if (tcache != NULL && tc_idx < mp_.tcache_bins) tcache_nb = nb; int return_cached = 0; tcache_unsorted_count = 0; #endif for (;; ) { int iters = 0; while ((victim = unsorted_chunks (av)->bk) != unsorted_chunks (av)) { bck = victim->bk; size = chunksize (victim); mchunkptr next = chunk_at_offset (victim, size); if (__glibc_unlikely (size <= CHUNK_HDR_SZ) || __glibc_unlikely (size > av->system_mem)) malloc_printerr ("malloc(): invalid size (unsorted)"); if (__glibc_unlikely (chunksize_nomask (next) < CHUNK_HDR_SZ) || __glibc_unlikely (chunksize_nomask (next) > av->system_mem)) malloc_printerr ("malloc(): invalid next size (unsorted)"); if (__glibc_unlikely ((prev_size (next) & ~(SIZE_BITS)) != size)) malloc_printerr ("malloc(): mismatching next->prev_size (unsorted)"); if (__glibc_unlikely (bck->fd != victim) || __glibc_unlikely (victim->fd != unsorted_chunks (av))) malloc_printerr ("malloc(): unsorted double linked list corrupted"); if (__glibc_unlikely (prev_inuse (next))) malloc_printerr ("malloc(): invalid next->prev_inuse (unsorted)"); ```
#### se `in_smallbin_range` Se il chunk è più grande della dimensione richiesta, usalo e imposta il resto dello spazio del chunk nella lista non ordinata e aggiorna il `last_remainder` con esso.
_int_malloc bin non ordinato in_smallbin_range ```c // From https://github.com/bminor/glibc/blob/master/malloc/malloc.c#L4090C11-L4124C14 /* If a small request, try to use last remainder if it is the only chunk in unsorted bin. This helps promote locality for runs of consecutive small requests. This is the only exception to best-fit, and applies only when there is no exact fit for a small chunk. */ if (in_smallbin_range (nb) && bck == unsorted_chunks (av) && victim == av->last_remainder && (unsigned long) (size) > (unsigned long) (nb + MINSIZE)) { /* split and reattach remainder */ remainder_size = size - nb; remainder = chunk_at_offset (victim, nb); unsorted_chunks (av)->bk = unsorted_chunks (av)->fd = remainder; av->last_remainder = remainder; remainder->bk = remainder->fd = unsorted_chunks (av); if (!in_smallbin_range (remainder_size)) { remainder->fd_nextsize = NULL; remainder->bk_nextsize = NULL; } set_head (victim, nb | PREV_INUSE | (av != &main_arena ? NON_MAIN_ARENA : 0)); set_head (remainder, remainder_size | PREV_INUSE); set_foot (remainder, remainder_size); check_malloced_chunk (av, victim, nb); void *p = chunk2mem (victim); alloc_perturb (p, bytes); return p; } ```
Se questo è stato un successo, restituisci il chunk e finisce qui, altrimenti continua a eseguire la funzione... #### se dimensione uguale Continua a rimuovere il chunk dal bin, nel caso in cui la dimensione richiesta sia esattamente quella del chunk: - Se il tcache non è pieno, aggiungilo al tcache e continua indicando che c'è un chunk tcache che potrebbe essere utilizzato - Se il tcache è pieno, usalo semplicemente restituendolo
_int_malloc bin non ordinato dimensione uguale ```c // From https://github.com/bminor/glibc/blob/master/malloc/malloc.c#L4126C11-L4157C14 /* remove from unsorted list */ unsorted_chunks (av)->bk = bck; bck->fd = unsorted_chunks (av); /* Take now instead of binning if exact fit */ if (size == nb) { set_inuse_bit_at_offset (victim, size); if (av != &main_arena) set_non_main_arena (victim); #if USE_TCACHE /* Fill cache first, return to user only if cache fills. We may return one of these chunks later. */ if (tcache_nb > 0 && tcache->counts[tc_idx] < mp_.tcache_count) { tcache_put (victim, tc_idx); return_cached = 1; continue; } else { #endif check_malloced_chunk (av, victim, nb); void *p = chunk2mem (victim); alloc_perturb (p, bytes); return p; #if USE_TCACHE } #endif } ```
Se il chunk non viene restituito o aggiunto a tcache, continua con il codice... #### posizionare il chunk in un bin Memorizza il chunk controllato nel small bin o nel large bin in base alla dimensione del chunk (mantenendo il large bin correttamente organizzato). Vengono eseguiti controlli di sicurezza per assicurarsi che entrambe le liste collegate doppie del large bin siano corrotte: - Se `fwd->bk_nextsize->fd_nextsize != fwd`: `malloc(): largebin double linked list corrupted (nextsize)` - Se `fwd->bk->fd != fwd`: `malloc(): largebin double linked list corrupted (bk)`
_int_malloc posizionare il chunk in un bin ```c /* place chunk in bin */ if (in_smallbin_range (size)) { victim_index = smallbin_index (size); bck = bin_at (av, victim_index); fwd = bck->fd; } else { victim_index = largebin_index (size); bck = bin_at (av, victim_index); fwd = bck->fd; /* maintain large bins in sorted order */ if (fwd != bck) { /* Or with inuse bit to speed comparisons */ size |= PREV_INUSE; /* if smaller than smallest, bypass loop below */ assert (chunk_main_arena (bck->bk)); if ((unsigned long) (size) < (unsigned long) chunksize_nomask (bck->bk)) { fwd = bck; bck = bck->bk; victim->fd_nextsize = fwd->fd; victim->bk_nextsize = fwd->fd->bk_nextsize; fwd->fd->bk_nextsize = victim->bk_nextsize->fd_nextsize = victim; } else { assert (chunk_main_arena (fwd)); while ((unsigned long) size < chunksize_nomask (fwd)) { fwd = fwd->fd_nextsize; assert (chunk_main_arena (fwd)); } if ((unsigned long) size == (unsigned long) chunksize_nomask (fwd)) /* Always insert in the second position. */ fwd = fwd->fd; else { victim->fd_nextsize = fwd; victim->bk_nextsize = fwd->bk_nextsize; if (__glibc_unlikely (fwd->bk_nextsize->fd_nextsize != fwd)) malloc_printerr ("malloc(): largebin double linked list corrupted (nextsize)"); fwd->bk_nextsize = victim; victim->bk_nextsize->fd_nextsize = victim; } bck = fwd->bk; if (bck->fd != fwd) malloc_printerr ("malloc(): largebin double linked list corrupted (bk)"); } } else victim->fd_nextsize = victim->bk_nextsize = victim; } mark_bin (av, victim_index); victim->bk = bck; victim->fd = fwd; fwd->bk = victim; bck->fd = victim; ```
#### Limiti di `_int_malloc` A questo punto, se un chunk è stato memorizzato nel tcache che può essere utilizzato e il limite è stato raggiunto, basta **restituire un chunk dal tcache**. Inoltre, se è stato raggiunto **MAX_ITERS**, esci dal ciclo e ottieni un chunk in un modo diverso (top chunk). Se `return_cached` è stato impostato, restituisci semplicemente un chunk dal tcache per evitare ricerche più ampie.
_int_malloc limiti ```c // From https://github.com/bminor/glibc/blob/master/malloc/malloc.c#L4227C1-L4250C7 #if USE_TCACHE /* If we've processed as many chunks as we're allowed while filling the cache, return one of the cached ones. */ ++tcache_unsorted_count; if (return_cached && mp_.tcache_unsorted_limit > 0 && tcache_unsorted_count > mp_.tcache_unsorted_limit) { return tcache_get (tc_idx); } #endif #define MAX_ITERS 10000 if (++iters >= MAX_ITERS) break; } #if USE_TCACHE /* If all the small chunks we found ended up cached, return one now. */ if (return_cached) { return tcache_get (tc_idx); } #endif ```
Se i limiti non sono stati raggiunti, continua con il codice... ### Large Bin (per indice) Se la richiesta è grande (non nella small bin) e non abbiamo ancora restituito alcun chunk, ottieni l'**indice** della dimensione richiesta nella **large bin**, controlla se **non è vuota** o se il **chunk più grande in questa bin è più grande** della dimensione richiesta e in tal caso trova il **chunk più piccolo che può essere utilizzato** per la dimensione richiesta. Se lo spazio rimanente dal chunk utilizzato può essere un nuovo chunk, aggiungilo alla unsorted bin e l'lsast_reminder viene aggiornato. Viene effettuato un controllo di sicurezza quando si aggiunge il resto alla unsorted bin: - `bck->fd-> bk != bck`: `malloc(): corrupted unsorted chunks`
_int_malloc Large bin (per indice) ```c // From https://github.com/bminor/glibc/blob/master/malloc/malloc.c#L4252C7-L4317C10 /* If a large request, scan through the chunks of current bin in sorted order to find smallest that fits. Use the skip list for this. */ if (!in_smallbin_range (nb)) { bin = bin_at (av, idx); /* skip scan if empty or largest chunk is too small */ if ((victim = first (bin)) != bin && (unsigned long) chunksize_nomask (victim) >= (unsigned long) (nb)) { victim = victim->bk_nextsize; while (((unsigned long) (size = chunksize (victim)) < (unsigned long) (nb))) victim = victim->bk_nextsize; /* Avoid removing the first entry for a size so that the skip list does not have to be rerouted. */ if (victim != last (bin) && chunksize_nomask (victim) == chunksize_nomask (victim->fd)) victim = victim->fd; remainder_size = size - nb; unlink_chunk (av, victim); /* Exhaust */ if (remainder_size < MINSIZE) { set_inuse_bit_at_offset (victim, size); if (av != &main_arena) set_non_main_arena (victim); } /* Split */ else { remainder = chunk_at_offset (victim, nb); /* We cannot assume the unsorted list is empty and therefore have to perform a complete insert here. */ bck = unsorted_chunks (av); fwd = bck->fd; if (__glibc_unlikely (fwd->bk != bck)) malloc_printerr ("malloc(): corrupted unsorted chunks"); last_re->bk = bck; remainder->fd = fwd; bck->fd = remainder; fwd->bk = remainder; if (!in_smallbin_range (remainder_size)) { remainder->fd_nextsize = NULL; remainder->bk_nextsize = NULL; } set_head (victim, nb | PREV_INUSE | (av != &main_arena ? NON_MAIN_ARENA : 0)); set_head (remainder, remainder_size | PREV_INUSE); set_foot (remainder, remainder_size); } check_malloced_chunk (av, victim, nb); void *p = chunk2mem (victim); alloc_perturb (p, bytes); return p; } } ```
Se un chunk non è trovato adatto per questo, continua ### Large Bin (prossimo più grande) Se nel grande bin esatto non c'era alcun chunk che potesse essere utilizzato, inizia a scorrere tutti i successivi grandi bin (partendo dal successivo più grande) fino a trovarne uno (se presente). Il resto del chunk diviso viene aggiunto nel bin non ordinato, last_reminder viene aggiornato e viene eseguito lo stesso controllo di sicurezza: - `bck->fd-> bk != bck`: `malloc(): corrupted unsorted chunks2`
_int_malloc Large bin (prossimo più grande) ```c // From https://github.com/bminor/glibc/blob/master/malloc/malloc.c#L4319C7-L4425C10 /* Search for a chunk by scanning bins, starting with next largest bin. This search is strictly by best-fit; i.e., the smallest (with ties going to approximately the least recently used) chunk that fits is selected. The bitmap avoids needing to check that most blocks are nonempty. The particular case of skipping all bins during warm-up phases when no chunks have been returned yet is faster than it might look. */ ++idx; bin = bin_at (av, idx); block = idx2block (idx); map = av->binmap[block]; bit = idx2bit (idx); for (;; ) { /* Skip rest of block if there are no more set bits in this block. */ if (bit > map || bit == 0) { do { if (++block >= BINMAPSIZE) /* out of bins */ goto use_top; } while ((map = av->binmap[block]) == 0); bin = bin_at (av, (block << BINMAPSHIFT)); bit = 1; } /* Advance to bin with set bit. There must be one. */ while ((bit & map) == 0) { bin = next_bin (bin); bit <<= 1; assert (bit != 0); } /* Inspect the bin. It is likely to be non-empty */ victim = last (bin); /* If a false alarm (empty bin), clear the bit. */ if (victim == bin) { av->binmap[block] = map &= ~bit; /* Write through */ bin = next_bin (bin); bit <<= 1; } else { size = chunksize (victim); /* We know the first chunk in this bin is big enough to use. */ assert ((unsigned long) (size) >= (unsigned long) (nb)); remainder_size = size - nb; /* unlink */ unlink_chunk (av, victim); /* Exhaust */ if (remainder_size < MINSIZE) { set_inuse_bit_at_offset (victim, size); if (av != &main_arena) set_non_main_arena (victim); } /* Split */ else { remainder = chunk_at_offset (victim, nb); /* We cannot assume the unsorted list is empty and therefore have to perform a complete insert here. */ bck = unsorted_chunks (av); fwd = bck->fd; if (__glibc_unlikely (fwd->bk != bck)) malloc_printerr ("malloc(): corrupted unsorted chunks 2"); remainder->bk = bck; remainder->fd = fwd; bck->fd = remainder; fwd->bk = remainder; /* advertise as last remainder */ if (in_smallbin_range (nb)) av->last_remainder = remainder; if (!in_smallbin_range (remainder_size)) { remainder->fd_nextsize = NULL; remainder->bk_nextsize = NULL; } set_head (victim, nb | PREV_INUSE | (av != &main_arena ? NON_MAIN_ARENA : 0)); set_head (remainder, remainder_size | PREV_INUSE); set_foot (remainder, remainder_size); } check_malloced_chunk (av, victim, nb); void *p = chunk2mem (victim); alloc_perturb (p, bytes); return p; } } ```
### Top Chunk A questo punto, è il momento di ottenere un nuovo chunk dal Top chunk (se abbastanza grande). Inizia con un controllo di sicurezza per assicurarsi che la dimensione del chunk non sia troppo grande (corrotto): - `chunksize(av->top) > av->system_mem`: `malloc(): corrupted top size` Poi, utilizzerà lo spazio del top chunk se è abbastanza grande per creare un chunk della dimensione richiesta.\ Se non lo è, se ci sono fast chunks, consolidali e riprova.\ Infine, se non c'è spazio sufficiente, usa `sysmalloc` per allocare una dimensione adeguata.
_int_malloc Top chunk ```c use_top: /* If large enough, split off the chunk bordering the end of memory (held in av->top). Note that this is in accord with the best-fit search rule. In effect, av->top is treated as larger (and thus less well fitting) than any other available chunk since it can be extended to be as large as necessary (up to system limitations). We require that av->top always exists (i.e., has size >= MINSIZE) after initialization, so if it would otherwise be exhausted by current request, it is replenished. (The main reason for ensuring it exists is that we may need MINSIZE space to put in fenceposts in sysmalloc.) */ victim = av->top; size = chunksize (victim); if (__glibc_unlikely (size > av->system_mem)) malloc_printerr ("malloc(): corrupted top size"); if ((unsigned long) (size) >= (unsigned long) (nb + MINSIZE)) { remainder_size = size - nb; remainder = chunk_at_offset (victim, nb); av->top = remainder; set_head (victim, nb | PREV_INUSE | (av != &main_arena ? NON_MAIN_ARENA : 0)); set_head (remainder, remainder_size | PREV_INUSE); check_malloced_chunk (av, victim, nb); void *p = chunk2mem (victim); alloc_perturb (p, bytes); return p; } /* When we are using atomic ops to free fast chunks we can get here for all block sizes. */ else if (atomic_load_relaxed (&av->have_fastchunks)) { malloc_consolidate (av); /* restore original bin index */ if (in_smallbin_range (nb)) idx = smallbin_index (nb); else idx = largebin_index (nb); } /* Otherwise, relay to handle system-dependent cases */ else { void *p = sysmalloc (nb, av); if (p != NULL) alloc_perturb (p, bytes); return p; } } } ```
## sysmalloc ### sysmalloc inizio Se arena è nullo o la dimensione richiesta è troppo grande (e ci sono mmaps rimasti permessi) usa `sysmalloc_mmap` per allocare spazio e restituirlo.
sysmalloc inizio ```c // From https://github.com/bminor/glibc/blob/f942a732d37a96217ef828116ebe64a644db18d7/malloc/malloc.c#L2531 /* sysmalloc handles malloc cases requiring more memory from the system. On entry, it is assumed that av->top does not have enough space to service request for nb bytes, thus requiring that av->top be extended or replaced. */ static void * sysmalloc (INTERNAL_SIZE_T nb, mstate av) { mchunkptr old_top; /* incoming value of av->top */ INTERNAL_SIZE_T old_size; /* its size */ char *old_end; /* its end address */ long size; /* arg to first MORECORE or mmap call */ char *brk; /* return value from MORECORE */ long correction; /* arg to 2nd MORECORE call */ char *snd_brk; /* 2nd return val */ INTERNAL_SIZE_T front_misalign; /* unusable bytes at front of new space */ INTERNAL_SIZE_T end_misalign; /* partial page left at end of new space */ char *aligned_brk; /* aligned offset into brk */ mchunkptr p; /* the allocated/returned chunk */ mchunkptr remainder; /* remainder from allocation */ unsigned long remainder_size; /* its size */ size_t pagesize = GLRO (dl_pagesize); bool tried_mmap = false; /* If have mmap, and the request size meets the mmap threshold, and the system supports mmap, and there are few enough currently allocated mmapped regions, try to directly map this request rather than expanding top. */ if (av == NULL || ((unsigned long) (nb) >= (unsigned long) (mp_.mmap_threshold) && (mp_.n_mmaps < mp_.n_mmaps_max))) { char *mm; if (mp_.hp_pagesize > 0 && nb >= mp_.hp_pagesize) { /* There is no need to issue the THP madvise call if Huge Pages are used directly. */ mm = sysmalloc_mmap (nb, mp_.hp_pagesize, mp_.hp_flags, av); if (mm != MAP_FAILED) return mm; } mm = sysmalloc_mmap (nb, pagesize, 0, av); if (mm != MAP_FAILED) return mm; tried_mmap = true; } /* There are no usable arenas and mmap also failed. */ if (av == NULL) return 0; ```
### sysmalloc controlli Inizia ottenendo informazioni sul vecchio chunk top e controllando che alcune delle seguenti condizioni siano vere: - La dimensione del vecchio heap è 0 (nuovo heap) - La dimensione del precedente heap è maggiore di MINSIZE e il vecchio Top è in uso - L'heap è allineato alla dimensione della pagina (0x1000 quindi i 12 bit inferiori devono essere 0) Poi controlla anche che: - La vecchia dimensione non ha spazio sufficiente per creare un chunk per la dimensione richiesta
sysmalloc controlli ```c /* Record incoming configuration of top */ old_top = av->top; old_size = chunksize (old_top); old_end = (char *) (chunk_at_offset (old_top, old_size)); brk = snd_brk = (char *) (MORECORE_FAILURE); /* If not the first time through, we require old_size to be at least MINSIZE and to have prev_inuse set. */ assert ((old_top == initial_top (av) && old_size == 0) || ((unsigned long) (old_size) >= MINSIZE && prev_inuse (old_top) && ((unsigned long) old_end & (pagesize - 1)) == 0)); /* Precondition: not enough current space to satisfy nb request */ assert ((unsigned long) (old_size) < (unsigned long) (nb + MINSIZE)); ```
### sysmalloc non main arena Inizialmente cercherà di **estendere** l'heap precedente per questo heap. Se non è possibile, cercherà di **allocare un nuovo heap** e aggiornare i puntatori per poterlo utilizzare.\ Infine, se ciò non ha funzionato, proverà a chiamare **`sysmalloc_mmap`**.
sysmalloc non main arena ```c if (av != &main_arena) { heap_info *old_heap, *heap; size_t old_heap_size; /* First try to extend the current heap. */ old_heap = heap_for_ptr (old_top); old_heap_size = old_heap->size; if ((long) (MINSIZE + nb - old_size) > 0 && grow_heap (old_heap, MINSIZE + nb - old_size) == 0) { av->system_mem += old_heap->size - old_heap_size; set_head (old_top, (((char *) old_heap + old_heap->size) - (char *) old_top) | PREV_INUSE); } else if ((heap = new_heap (nb + (MINSIZE + sizeof (*heap)), mp_.top_pad))) { /* Use a newly allocated heap. */ heap->ar_ptr = av; heap->prev = old_heap; av->system_mem += heap->size; /* Set up the new top. */ top (av) = chunk_at_offset (heap, sizeof (*heap)); set_head (top (av), (heap->size - sizeof (*heap)) | PREV_INUSE); /* Setup fencepost and free the old top chunk with a multiple of MALLOC_ALIGNMENT in size. */ /* The fencepost takes at least MINSIZE bytes, because it might become the top chunk again later. Note that a footer is set up, too, although the chunk is marked in use. */ old_size = (old_size - MINSIZE) & ~MALLOC_ALIGN_MASK; set_head (chunk_at_offset (old_top, old_size + CHUNK_HDR_SZ), 0 | PREV_INUSE); if (old_size >= MINSIZE) { set_head (chunk_at_offset (old_top, old_size), CHUNK_HDR_SZ | PREV_INUSE); set_foot (chunk_at_offset (old_top, old_size), CHUNK_HDR_SZ); set_head (old_top, old_size | PREV_INUSE | NON_MAIN_ARENA); _int_free (av, old_top, 1); } else { set_head (old_top, (old_size + CHUNK_HDR_SZ) | PREV_INUSE); set_foot (old_top, (old_size + CHUNK_HDR_SZ)); } } else if (!tried_mmap) { /* We can at least try to use to mmap memory. If new_heap fails it is unlikely that trying to allocate huge pages will succeed. */ char *mm = sysmalloc_mmap (nb, pagesize, 0, av); if (mm != MAP_FAILED) return mm; } } ```
### sysmalloc main arena Inizia a calcolare la quantità di memoria necessaria. Inizierà richiedendo memoria contigua, quindi in questo caso sarà possibile utilizzare la vecchia memoria non utilizzata. Vengono inoltre eseguite alcune operazioni di allineamento.
sysmalloc main arena ```c // From https://github.com/bminor/glibc/blob/f942a732d37a96217ef828116ebe64a644db18d7/malloc/malloc.c#L2665C1-L2713C10 else /* av == main_arena */ { /* Request enough space for nb + pad + overhead */ size = nb + mp_.top_pad + MINSIZE; /* If contiguous, we can subtract out existing space that we hope to combine with new space. We add it back later only if we don't actually get contiguous space. */ if (contiguous (av)) size -= old_size; /* Round to a multiple of page size or huge page size. If MORECORE is not contiguous, this ensures that we only call it with whole-page arguments. And if MORECORE is contiguous and this is not first time through, this preserves page-alignment of previous calls. Otherwise, we correct to page-align below. */ #ifdef MADV_HUGEPAGE /* Defined in brk.c. */ extern void *__curbrk; if (__glibc_unlikely (mp_.thp_pagesize != 0)) { uintptr_t top = ALIGN_UP ((uintptr_t) __curbrk + size, mp_.thp_pagesize); size = top - (uintptr_t) __curbrk; } else #endif size = ALIGN_UP (size, GLRO(dl_pagesize)); /* Don't try to call MORECORE if argument is so big as to appear negative. Note that since mmap takes size_t arg, it may succeed below even if we cannot call MORECORE. */ if (size > 0) { brk = (char *) (MORECORE (size)); if (brk != (char *) (MORECORE_FAILURE)) madvise_thp (brk, size); LIBC_PROBE (memory_sbrk_more, 2, brk, size); } ```
### sysmalloc main arena previous error 1 Se il precedente ha restituito `MORECORE_FAILURE`, prova di nuovo ad allocare memoria usando `sysmalloc_mmap_fallback`
sysmalloc main arena previous error 1 ```c // From https://github.com/bminor/glibc/blob/f942a732d37a96217ef828116ebe64a644db18d7/malloc/malloc.c#L2715C7-L2740C10 if (brk == (char *) (MORECORE_FAILURE)) { /* If have mmap, try using it as a backup when MORECORE fails or cannot be used. This is worth doing on systems that have "holes" in address space, so sbrk cannot extend to give contiguous space, but space is available elsewhere. Note that we ignore mmap max count and threshold limits, since the space will not be used as a segregated mmap region. */ char *mbrk = MAP_FAILED; if (mp_.hp_pagesize > 0) mbrk = sysmalloc_mmap_fallback (&size, nb, old_size, mp_.hp_pagesize, mp_.hp_pagesize, mp_.hp_flags, av); if (mbrk == MAP_FAILED) mbrk = sysmalloc_mmap_fallback (&size, nb, old_size, MMAP_AS_MORECORE_SIZE, pagesize, 0, av); if (mbrk != MAP_FAILED) { /* We do not need, and cannot use, another sbrk call to find end */ brk = mbrk; snd_brk = brk + size; } } ```
### sysmalloc main arena continua Se il precedente non ha restituito `MORECORE_FAILURE`, se ha funzionato crea alcune allineamenti:
sysmalloc main arena errore precedente 2 ```c // From https://github.com/bminor/glibc/blob/f942a732d37a96217ef828116ebe64a644db18d7/malloc/malloc.c#L2742 if (brk != (char *) (MORECORE_FAILURE)) { if (mp_.sbrk_base == 0) mp_.sbrk_base = brk; av->system_mem += size; /* If MORECORE extends previous space, we can likewise extend top size. */ if (brk == old_end && snd_brk == (char *) (MORECORE_FAILURE)) set_head (old_top, (size + old_size) | PREV_INUSE); else if (contiguous (av) && old_size && brk < old_end) /* Oops! Someone else killed our space.. Can't touch anything. */ malloc_printerr ("break adjusted to free malloc space"); /* Otherwise, make adjustments: * If the first time through or noncontiguous, we need to call sbrk just to find out where the end of memory lies. * We need to ensure that all returned chunks from malloc will meet MALLOC_ALIGNMENT * If there was an intervening foreign sbrk, we need to adjust sbrk request size to account for fact that we will not be able to combine new space with existing space in old_top. * Almost all systems internally allocate whole pages at a time, in which case we might as well use the whole last page of request. So we allocate enough more memory to hit a page boundary now, which in turn causes future contiguous calls to page-align. */ else { front_misalign = 0; end_misalign = 0; correction = 0; aligned_brk = brk; /* handle contiguous cases */ if (contiguous (av)) { /* Count foreign sbrk as system_mem. */ if (old_size) av->system_mem += brk - old_end; /* Guarantee alignment of first new chunk made from this space */ front_misalign = (INTERNAL_SIZE_T) chunk2mem (brk) & MALLOC_ALIGN_MASK; if (front_misalign > 0) { /* Skip over some bytes to arrive at an aligned position. We don't need to specially mark these wasted front bytes. They will never be accessed anyway because prev_inuse of av->top (and any chunk created from its start) is always true after initialization. */ correction = MALLOC_ALIGNMENT - front_misalign; aligned_brk += correction; } /* If this isn't adjacent to existing space, then we will not be able to merge with old_top space, so must add to 2nd request. */ correction += old_size; /* Extend the end address to hit a page boundary */ end_misalign = (INTERNAL_SIZE_T) (brk + size + correction); correction += (ALIGN_UP (end_misalign, pagesize)) - end_misalign; assert (correction >= 0); snd_brk = (char *) (MORECORE (correction)); /* If can't allocate correction, try to at least find out current brk. It might be enough to proceed without failing. Note that if second sbrk did NOT fail, we assume that space is contiguous with first sbrk. This is a safe assumption unless program is multithreaded but doesn't use locks and a foreign sbrk occurred between our first and second calls. */ if (snd_brk == (char *) (MORECORE_FAILURE)) { correction = 0; snd_brk = (char *) (MORECORE (0)); } else madvise_thp (snd_brk, correction); } /* handle non-contiguous cases */ else { if (MALLOC_ALIGNMENT == CHUNK_HDR_SZ) /* MORECORE/mmap must correctly align */ assert (((unsigned long) chunk2mem (brk) & MALLOC_ALIGN_MASK) == 0); else { front_misalign = (INTERNAL_SIZE_T) chunk2mem (brk) & MALLOC_ALIGN_MASK; if (front_misalign > 0) { /* Skip over some bytes to arrive at an aligned position. We don't need to specially mark these wasted front bytes. They will never be accessed anyway because prev_inuse of av->top (and any chunk created from its start) is always true after initialization. */ aligned_brk += MALLOC_ALIGNMENT - front_misalign; } } /* Find out current end of memory */ if (snd_brk == (char *) (MORECORE_FAILURE)) { snd_brk = (char *) (MORECORE (0)); } } /* Adjust top based on results of second sbrk */ if (snd_brk != (char *) (MORECORE_FAILURE)) { av->top = (mchunkptr) aligned_brk; set_head (av->top, (snd_brk - aligned_brk + correction) | PREV_INUSE); av->system_mem += correction; /* If not the first time through, we either have a gap due to foreign sbrk or a non-contiguous region. Insert a double fencepost at old_top to prevent consolidation with space we don't own. These fenceposts are artificial chunks that are marked as inuse and are in any case too small to use. We need two to make sizes and alignments work out. */ if (old_size != 0) { /* Shrink old_top to insert fenceposts, keeping size a multiple of MALLOC_ALIGNMENT. We know there is at least enough space in old_top to do this. */ old_size = (old_size - 2 * CHUNK_HDR_SZ) & ~MALLOC_ALIGN_MASK; set_head (old_top, old_size | PREV_INUSE); /* Note that the following assignments completely overwrite old_top when old_size was previously MINSIZE. This is intentional. We need the fencepost, even if old_top otherwise gets lost. */ set_head (chunk_at_offset (old_top, old_size), CHUNK_HDR_SZ | PREV_INUSE); set_head (chunk_at_offset (old_top, old_size + CHUNK_HDR_SZ), CHUNK_HDR_SZ | PREV_INUSE); /* If possible, release the rest. */ if (old_size >= MINSIZE) { _int_free (av, old_top, 1); } } } } } } /* if (av != &main_arena) */ ```
### sysmalloc finale Completa l'allocazione aggiornando le informazioni dell'arena. ```c // From https://github.com/bminor/glibc/blob/f942a732d37a96217ef828116ebe64a644db18d7/malloc/malloc.c#L2921C3-L2943C12 if ((unsigned long) av->system_mem > (unsigned long) (av->max_system_mem)) av->max_system_mem = av->system_mem; check_malloc_state (av); /* finally, do the allocation */ p = av->top; size = chunksize (p); /* check that one of the above allocation paths succeeded */ if ((unsigned long) (size) >= (unsigned long) (nb + MINSIZE)) { remainder_size = size - nb; remainder = chunk_at_offset (p, nb); av->top = remainder; set_head (p, nb | PREV_INUSE | (av != &main_arena ? NON_MAIN_ARENA : 0)); set_head (remainder, remainder_size | PREV_INUSE); check_malloced_chunk (av, p, nb); return chunk2mem (p); } /* catch all failure paths */ __set_errno (ENOMEM); return 0; ``` ## sysmalloc_mmap
codice sysmalloc_mmap ```c // From https://github.com/bminor/glibc/blob/f942a732d37a96217ef828116ebe64a644db18d7/malloc/malloc.c#L2392C1-L2481C2 static void * sysmalloc_mmap (INTERNAL_SIZE_T nb, size_t pagesize, int extra_flags, mstate av) { long int size; /* Round up size to nearest page. For mmapped chunks, the overhead is one SIZE_SZ unit larger than for normal chunks, because there is no following chunk whose prev_size field could be used. See the front_misalign handling below, for glibc there is no need for further alignments unless we have have high alignment. */ if (MALLOC_ALIGNMENT == CHUNK_HDR_SZ) size = ALIGN_UP (nb + SIZE_SZ, pagesize); else size = ALIGN_UP (nb + SIZE_SZ + MALLOC_ALIGN_MASK, pagesize); /* Don't try if size wraps around 0. */ if ((unsigned long) (size) <= (unsigned long) (nb)) return MAP_FAILED; char *mm = (char *) MMAP (0, size, mtag_mmap_flags | PROT_READ | PROT_WRITE, extra_flags); if (mm == MAP_FAILED) return mm; #ifdef MAP_HUGETLB if (!(extra_flags & MAP_HUGETLB)) madvise_thp (mm, size); #endif __set_vma_name (mm, size, " glibc: malloc"); /* The offset to the start of the mmapped region is stored in the prev_size field of the chunk. This allows us to adjust returned start address to meet alignment requirements here and in memalign(), and still be able to compute proper address argument for later munmap in free() and realloc(). */ INTERNAL_SIZE_T front_misalign; /* unusable bytes at front of new space */ if (MALLOC_ALIGNMENT == CHUNK_HDR_SZ) { /* For glibc, chunk2mem increases the address by CHUNK_HDR_SZ and MALLOC_ALIGN_MASK is CHUNK_HDR_SZ-1. Each mmap'ed area is page aligned and therefore definitely MALLOC_ALIGN_MASK-aligned. */ assert (((INTERNAL_SIZE_T) chunk2mem (mm) & MALLOC_ALIGN_MASK) == 0); front_misalign = 0; } else front_misalign = (INTERNAL_SIZE_T) chunk2mem (mm) & MALLOC_ALIGN_MASK; mchunkptr p; /* the allocated/returned chunk */ if (front_misalign > 0) { ptrdiff_t correction = MALLOC_ALIGNMENT - front_misalign; p = (mchunkptr) (mm + correction); set_prev_size (p, correction); set_head (p, (size - correction) | IS_MMAPPED); } else { p = (mchunkptr) mm; set_prev_size (p, 0); set_head (p, size | IS_MMAPPED); } /* update statistics */ int new = atomic_fetch_add_relaxed (&mp_.n_mmaps, 1) + 1; atomic_max (&mp_.max_n_mmaps, new); unsigned long sum; sum = atomic_fetch_add_relaxed (&mp_.mmapped_mem, size) + size; atomic_max (&mp_.max_mmapped_mem, sum); check_chunk (av, p); return chunk2mem (p); } ```
{{#include ../../../banners/hacktricks-training.md}}