Translated ['src/AI/AI-Unsupervised-Learning-Algorithms.md'] to hi

This commit is contained in:
Translator 2025-07-30 14:34:46 +00:00
parent 853d5f0057
commit 5108c05daa

View File

@ -9,29 +9,29 @@
### K-Means Clustering
K-Means एक सेंट्रॉइड-आधारित क्लस्टरिंग एल्गोरिदम है जो डेटा को K क्लस्टर्स में विभाजित करता है, प्रत्येक बिंदु को निकटतम क्लस्टर के औसत में असाइन करके। एल्गोरिदम इस प्रकार काम करता है:
K-Means एक सेंट्रॉइड-आधारित क्लस्टरिंग एल्गोरिदम है जो डेटा को K क्लस्टरों में विभाजित करता है, प्रत्येक बिंदु को निकटतम क्लस्टर के औसत में असाइन करके। एल्गोरिदम इस प्रकार काम करता है:
1. **Initialization**: K प्रारंभिक क्लस्टर केंद्र (सेंट्रॉइड) चुनें, अक्सर यादृच्छिक रूप से या k-means++ जैसे स्मार्ट तरीकों के माध्यम से।
2. **Assignment**: प्रत्येक डेटा बिंदु को निकटतम सेंट्रॉइड के आधार पर एक दूरी मेट्रिक (जैसे, यूक्लिडियन दूरी) के अनुसार असाइन करें।
3. **Update**: प्रत्येक क्लस्टर में असाइन किए गए सभी डेटा बिंदुओं का औसत लेकर सेंट्रॉइड को फिर से गणना करें।
4. **Repeat**: क्लस्टर असाइनमेंट स्थिर होने तक (सेंट्रॉइड अब महत्वपूर्ण रूप से नहीं चलते) चरण 2-3 को दोहराएं।
> [!TIP]
> *Use cases in cybersecurity:* K-Means का उपयोग नेटवर्क घटनाओं को क्लस्टर करके घुसपैठ पहचान के लिए किया जाता है। उदाहरण के लिए, शोधकर्ताओं ने KDD कप 99 घुसपैठ डेटा सेट पर K-Means लागू किया और पाया कि यह प्रभावी रूप से ट्रैफ़िक को सामान्य बनाम हमले के क्लस्टर्स में विभाजित करता है। प्रैक्टिस में, सुरक्षा विश्लेषक लॉग प्रविष्टियों या उपयोगकर्ता व्यवहार डेटा को समान गतिविधियों के समूह खोजने के लिए क्लस्टर कर सकते हैं; कोई भी बिंदु जो एक अच्छी तरह से निर्मित क्लस्टर में नहीं है, विसंगतियों को इंगित कर सकता है (जैसे, एक नया मैलवेयर प्रकार जो अपना छोटा क्लस्टर बना रहा है)। K-Means मैलवेयर परिवार वर्गीकरण में भी मदद कर सकता है, बाइनरी को व्यवहार प्रोफाइल या विशेषता वेक्टर के आधार पर समूहित करके।
> *Use cases in cybersecurity:* K-Means का उपयोग नेटवर्क घटनाओं को क्लस्टर करके घुसपैठ पहचान के लिए किया जाता है। उदाहरण के लिए, शोधकर्ताओं ने KDD कप 99 घुसपैठ डेटा सेट पर K-Means लागू किया और पाया कि यह प्रभावी रूप से ट्रैफ़िक को सामान्य बनाम हमले के क्लस्टरों में विभाजित करता है। प्रैक्टिस में, सुरक्षा विश्लेषक लॉग प्रविष्टियों या उपयोगकर्ता व्यवहार डेटा को समान गतिविधियों के समूह खोजने के लिए क्लस्टर कर सकते हैं; कोई भी बिंदु जो एक अच्छी तरह से निर्मित क्लस्टर में नहीं आता है, विसंगतियों को इंगित कर सकता है (जैसे, एक नया मैलवेयर प्रकार जो अपना छोटा क्लस्टर बना रहा है)। K-Means मैलवेयर परिवार वर्गीकरण में भी मदद कर सकता है, बाइनरी को व्यवहार प्रोफाइल या विशेषता वेक्टर के आधार पर समूहित करके।
#### Selection of K
क्लस्टर्स की संख्या (K) एक हाइपरपैरामीटर है जिसे एल्गोरिदम चलाने से पहले परिभाषित करने की आवश्यकता होती है। Elbow Method या Silhouette Score जैसी तकनीकें K के लिए उपयुक्त मान निर्धारित करने में मदद कर सकती हैं, क्लस्टरिंग प्रदर्शन का मूल्यांकन करके:
क्लस्टरों की संख्या (K) एक हाइपरपैरामीटर है जिसे एल्गोरिदम चलाने से पहले परिभाषित करने की आवश्यकता होती है। Elbow Method या Silhouette Score जैसी तकनीकें K के लिए उपयुक्त मान निर्धारित करने में मदद कर सकती हैं, क्लस्टरिंग प्रदर्शन का मूल्यांकन करके:
- **Elbow Method**: प्रत्येक बिंदु से उसके असाइन किए गए क्लस्टर सेंट्रॉइड तक के वर्ग दूरी का योग K के एक फ़ंक्शन के रूप में प्लॉट करें। "Elbow" बिंदु की तलाश करें जहाँ कमी की दर तेज़ी से बदलती है, जो उपयुक्त संख्या के क्लस्टर्स को इंगित करती है।
- **Silhouette Score**: विभिन्न K मानों के लिए सिल्हूट स्कोर की गणना करें। उच्च सिल्हूट स्कोर बेहतर परिभाषित क्लस्टर्स को इंगित करता है।
- **Elbow Method**: प्रत्येक बिंदु से उसके असाइन किए गए क्लस्टर सेंट्रॉइड तक के वर्ग दूरी का योग K के एक फ़ंक्शन के रूप में प्लॉट करें। "Elbow" बिंदु की तलाश करें जहाँ कमी की दर तेज़ी से बदलती है, जो उपयुक्त संख्या के क्लस्टरों को इंगित करती है।
- **Silhouette Score**: विभिन्न K मानों के लिए सिल्हूट स्कोर की गणना करें। उच्च सिल्हूट स्कोर बेहतर परिभाषित क्लस्टरों को इंगित करता है।
#### Assumptions and Limitations
K-Means मानता है कि **क्लस्टर्स गोलाकार और समान आकार के हैं**, जो सभी डेटा सेट के लिए सही नहीं हो सकता है। यह सेंट्रॉइड के प्रारंभिक स्थान के प्रति संवेदनशील है और स्थानीय न्यूनतम पर समेकित हो सकता है। इसके अतिरिक्त, K-Means उन डेटा सेट के लिए उपयुक्त नहीं है जिनमें विभिन्न घनत्व या गैर-गोलाकार आकार और विभिन्न स्केल की विशेषताएँ हैं। यह सुनिश्चित करने के लिए कि सभी विशेषताएँ दूरी गणनाओं में समान रूप से योगदान करती हैं, सामान्यीकरण या मानकीकरण जैसे पूर्व-प्रसंस्करण चरण आवश्यक हो सकते हैं
K-Means मानता है कि **क्लस्टर गोलाकार और समान आकार के हैं**, जो सभी डेटा सेट के लिए सही नहीं हो सकता है। यह सेंट्रॉइड के प्रारंभिक स्थान के प्रति संवेदनशील है और स्थानीय न्यूनतम पर समेकित हो सकता है। इसके अतिरिक्त, K-Means उन डेटा सेट के लिए उपयुक्त नहीं है जिनमें विभिन्न घनत्व या गैर-गोलाकार आकार और विभिन्न स्केल की विशेषताएँ हैं। यह सुनिश्चित करने के लिए कि सभी विशेषताएँ दूरी की गणनाओं में समान रूप से योगदान करती हैं, सामान्यीकरण या मानकीकरण जैसे पूर्व-प्रसंस्करण चरणों की आवश्यकता हो सकती है
<details>
<summary>Example -- Clustering Network Events
</summary>
नीचे हम नेटवर्क ट्रैफ़िक डेटा का अनुकरण करते हैं और इसे क्लस्टर करने के लिए K-Means का उपयोग करते हैं। मान लीजिए कि हमारे पास कनेक्शन अवधि और बाइट गिनती जैसी विशेषताओं वाले घटनाएँ हैं। हम "सामान्य" ट्रैफ़िक के 3 क्लस्टर्स और एक छोटे क्लस्टर का निर्माण करते हैं जो एक हमले के पैटर्न का प्रतिनिधित्व करता है। फिर हम K-Means चलाते हैं यह देखने के लिए कि क्या यह उन्हें अलग करता है।
नीचे हम नेटवर्क ट्रैफ़िक डेटा का अनुकरण करते हैं और इसे क्लस्टर करने के लिए K-Means का उपयोग करते हैं। मान लीजिए कि हमारे पास कनेक्शन अवधि और बाइट गिनती जैसी विशेषताओं वाले घटनाएँ हैं। हम "सामान्य" ट्रैफ़िक के 3 क्लस्टर और एक छोटे क्लस्टर का निर्माण करते हैं जो एक हमले के पैटर्न का प्रतिनिधित्व करता है। फिर हम K-Means चलाते हैं यह देखने के लिए कि क्या यह उन्हें अलग करता है।
```python
import numpy as np
from sklearn.cluster import KMeans
@ -63,19 +63,19 @@ print(f" Cluster {idx}: {center}")
हायरार्किकल क्लस्टरिंग एक हायरार्की बनाता है जो या तो एक बॉटम-अप (एग्लोमेरेटिव) दृष्टिकोण या एक टॉप-डाउन (डिविज़िव) दृष्टिकोण का उपयोग करता है:
1. **एग्लोमेरेटिव (बॉटम-अप)**: प्रत्येक डेटा बिंदु को एक अलग क्लस्टर के रूप में शुरू करें और निकटतम क्लस्टरों को क्रमिक रूप से मर्ज करें जब तक एक ही क्लस्टर न रह जाए या एक स्टॉपिंग मानदंड पूरा न हो जाए।
2. **डिविज़िव (टॉप-डाउन)**: सभी डेटा बिंदुओं को एक ही क्लस्टर में शुरू करें और क्रमिक रूप से क्लस्टरों को विभाजित करें जब तक प्रत्येक डेटा बिंदु अपना स्वयं का क्लस्टर न बन जाए या एक स्टॉपिंग मानदंड पूरा न हो जाए।
1. **एग्लोमेरेटिव (बॉटम-अप)**: प्रत्येक डेटा बिंदु को एक अलग क्लस्टर के रूप में शुरू करें और निकटतम क्लस्टरों को क्रमिक रूप से मर्ज करें जब तक एक ही क्लस्टर न रह जाए या एक रोकने का मानदंड पूरा न हो जाए।
2. **डिविज़िव (टॉप-डाउन)**: सभी डेटा बिंदुओं को एक ही क्लस्टर में शुरू करें और क्रमिक रूप से क्लस्टरों को विभाजित करें जब तक प्रत्येक डेटा बिंदु अपना स्वयं का क्लस्टर न बन जाए या एक रोकने का मानदंड पूरा न हो जाए।
एग्लोमेरेटिव क्लस्टरिंग को इंटर-क्लस्टर दूरी की परिभाषा और मर्ज करने के लिए लिंक क्राइटेरियन की आवश्यकता होती है। सामान्य लिंक विधियों में सिंगल लिंक (दो क्लस्टरों के बीच निकटतम बिंदुओं की दूरी), कम्प्लीट लिंक (दूरस्थ बिंदुओं की दूरी), एवरेज लिंक, आदि शामिल हैं, और दूरी मेट्रिक अक्सर यूक्लिडियन होती है। लिंक के चयन से उत्पादित क्लस्टरों का आकार प्रभावित होता है। क्लस्टरों की संख्या K को पूर्व-निर्धारित करने की आवश्यकता नहीं है; आप इच्छित स्तर पर डेंड्रोग्राम को "कट" कर सकते हैं ताकि वांछित संख्या में क्लस्टर प्राप्त हो सके
एग्लोमेरेटिव क्लस्टरिंग को इंटर-क्लस्टर दूरी की परिभाषा और मर्ज करने के लिए लिंक क्राइटेरियन की आवश्यकता होती है। सामान्य लिंक विधियों में सिंगल लिंक (दो क्लस्टरों के बीच निकटतम बिंदुओं की दूरी), कम्प्लीट लिंक (दूरस्थ बिंदुओं की दूरी), एवरेज लिंक आदि शामिल हैं, और दूरी मेट्रिक अक्सर यूक्लिडियन होती है। लिंक के चयन से उत्पादित क्लस्टरों का आकार प्रभावित होता है। क्लस्टरों की संख्या K को पूर्व-निर्धारित करने की आवश्यकता नहीं है; आप इच्छित स्तर पर डेंड्रोग्राम को "कट" कर सकते हैं ताकि आवश्यक संख्या में क्लस्टर प्राप्त हो सके।
हायरार्किकल क्लस्टरिंग एक डेंड्रोग्राम उत्पन्न करता है, जो एक पेड़ के समान संरचना है जो विभिन्न स्तरों पर क्लस्टरों के बीच संबंधों को दिखाता है। डेंड्रोग्राम को इच्छित स्तर पर काटा जा सकता है ताकि विशिष्ट संख्या में क्लस्टर प्राप्त हो सकें।
> [!TIP]
> *साइबर सुरक्षा में उपयोग के मामले:* हायरार्किकल क्लस्टरिंग घटनाओं या संस्थाओं को एक पेड़ में व्यवस्थित कर सकती है ताकि संबंधों को देखा जा सके। उदाहरण के लिए, मैलवेयर विश्लेषण में, एग्लोमेरेटिव क्लस्टरिंग व्यवहारात्मक समानता के आधार पर नमूनों को समूहित कर सकती है, जो मैलवेयर परिवारों और विविधताओं की एक हायरार्की को प्रकट करती है। नेटवर्क सुरक्षा में, कोई IP ट्रैफ़िक प्रवाह को क्लस्टर कर सकता है और ट्रैफ़िक के उप-समूहों को देखने के लिए डेंड्रोग्राम का उपयोग कर सकता है (जैसे, प्रोटोकॉल द्वारा, फिर व्यवहार द्वारा)। चूंकि आपको पहले से K का चयन करने की आवश्यकता नहीं है, यह नए डेटा का अन्वेषण करते समय उपयोगी है जिसके लिए हमले की श्रेणियों की संख्या अज्ञात है।
> *साइबर सुरक्षा में उपयोग के मामले:* हायरार्किकल क्लस्टरिंग घटनाओं या संस्थाओं को एक पेड़ में व्यवस्थित कर सकती है ताकि संबंधों को देखा जा सके। उदाहरण के लिए, मैलवेयर विश्लेषण में, एग्लोमेरेटिव क्लस्टरिंग व्यवहारात्मक समानता के आधार पर नमूनों को समूहित कर सकती है, जो मैलवेयर परिवारों और विविधताओं की एक हायरार्की प्रकट करती है। नेटवर्क सुरक्षा में, कोई IP ट्रैफ़िक प्रवाह को क्लस्टर कर सकता है और ट्रैफ़िक के उप-समूहों को देखने के लिए डेंड्रोग्राम का उपयोग कर सकता है (जैसे, प्रोटोकॉल द्वारा, फिर व्यवहार द्वारा)। चूंकि आपको पहले से K का चयन करने की आवश्यकता नहीं है, यह नए डेटा का अन्वेषण करते समय उपयोगी है जिसके लिए हमले की श्रेणियों की संख्या अज्ञात है।
#### धारणाएँ और सीमाएँ
हायरार्किकल क्लस्टरिंग किसी विशेष क्लस्टर आकार का अनुमान नहीं लगाती है और नेस्टेड क्लस्टरों को कैप्चर कर सकती है। यह समूहों के बीच वर्गीकरण या संबंधों की खोज के लिए उपयोगी है (जैसे, मैलवेयर को परिवार उप-समूहों द्वारा समूहित करना)। यह निर्धारक है (कोई यादृच्छिक प्रारंभिककरण मुद्दे नहीं)। एक प्रमुख लाभ डेंड्रोग्राम है, जो सभी पैमानों पर डेटा की क्लस्टरिंग संरचना में अंतर्दृष्टि प्रदान करता है - सुरक्षा विश्लेषक एक उपयुक्त कटऑफ तय कर सकते हैं ताकि अर्थपूर्ण क्लस्टरों की पहचान की जा सके। हालाँकि, यह गणनात्मक रूप से महंगा है (आमतौर पर $O(n^2)$ समय या खराब के लिए साधारण कार्यान्वयन) और बहुत बड़े डेटा सेट के लिए व्यवहार्य नहीं है। यह एक लालची प्रक्रिया भी है - एक बार मर्ज या विभाजन हो जाने के बाद, इसे पूर्ववत नहीं किया जा सकता, जो यदि कोई गलती जल्दी होती है तो उप-आदर्श क्लस्टरों की ओर ले जा सकता है। आउटलेयर भी कुछ लिंक रणनीतियों को प्रभावित कर सकते हैं (सिंगल-लिंक "चेनिंग" प्रभाव पैदा कर सकता है जहां क्लस्टर आउटलेयर के माध्यम से लिंक होते हैं)।
हायरार्किकल क्लस्टरिंग किसी विशेष क्लस्टर आकार की धारणा नहीं करती है और नेस्टेड क्लस्टरों को कैप्चर कर सकती है। यह समूहों के बीच वर्गीकरण या संबंधों की खोज के लिए उपयोगी है (जैसे, परिवार उप-समूहों द्वारा मैलवेयर को समूहित करना)। यह निर्धारक है (कोई यादृच्छिक प्रारंभिककरण मुद्दे नहीं)। एक प्रमुख लाभ डेंड्रोग्राम है, जो सभी पैमानों पर डेटा की क्लस्टरिंग संरचना में अंतर्दृष्टि प्रदान करता है - सुरक्षा विश्लेषक एक उपयुक्त कटऑफ तय कर सकते हैं ताकि अर्थपूर्ण क्लस्टरों की पहचान की जा सके। हालाँकि, यह गणनात्मक रूप से महंगा है (आमतौर पर $O(n^2)$ समय या खराब के लिए साधारण कार्यान्वयन) और बहुत बड़े डेटा सेट के लिए व्यवहार्य नहीं है। यह एक लालची प्रक्रिया भी है - एक बार मर्ज या विभाजन हो जाने के बाद, इसे पूर्ववत नहीं किया जा सकता, जो यदि कोई गलती जल्दी होती है तो उप-आदर्श क्लस्टरों की ओर ले जा सकता है। आउटलेयर भी कुछ लिंक रणनीतियों को प्रभावित कर सकते हैं (सिंगल-लिंक "चेनिंग" प्रभाव पैदा कर सकता है जहां क्लस्टर आउटलेयर के माध्यम से लिंक होते हैं)।
<details>
<summary>उदाहरण -- घटनाओं की एग्लोमेरेटिव क्लस्टरिंग
@ -107,23 +107,23 @@ DBSCAN एक घनत्व-आधारित क्लस्टरिंग
DBSCAN दो पैरामीटर परिभाषित करता है:
- **Epsilon (ε)**: दो बिंदुओं के बीच अधिकतम दूरी जिसे एक ही क्लस्टर का हिस्सा माना जाएगा।
- **MinPts**: घनिष्ठ क्षेत्र (कोर बिंदु) बनाने के लिए आवश्यक न्यूनतम बिंदुओं की संख्या।
- **MinPts**: एक घने क्षेत्र (कोर बिंदु) बनाने के लिए आवश्यक न्यूनतम बिंदुओं की संख्या।
DBSCAN कोर बिंदुओं, सीमा बिंदुओं और शोर बिंदुओं की पहचान करता है:
- **कोर बिंदु**: एक बिंदु जिसमें कम से कम MinPts पड़ोसी ε दूरी के भीतर होते हैं।
- **सीमा बिंदु**: एक बिंदु जो एक कोर बिंदु के ε दूरी के भीतर है लेकिन इसमें MinPts से कम पड़ोसी हैं।
- **शोर बिंदु**: एक बिंदु जो न तो कोर बिंदु है और न ही सीमा बिंदु।
क्लस्टरिंग एक अनदेखे कोर बिंदु को चुनकर शुरू होती है, इसे एक नए क्लस्टर के रूप में चिह्नित करती है, फिर सभी बिंदुओं को पुनरावृत्त रूप से जोड़ती है जो इससे घनत्व-प्राप्त योग्य हैं (कोर बिंदु और उनके पड़ोसी, आदि)। सीमा बिंदुओं को निकटतम कोर के क्लस्टर में जोड़ा जाता है। सभी पहुंच योग्य बिंदुओं का विस्तार करने के बाद, DBSCAN एक अन्य अनदेखे कोर पर जाता है ताकि एक नया क्लस्टर शुरू कर सके। किसी भी कोर द्वारा नहीं पहुंचाए गए बिंदु शोर के रूप में लेबल किए जाते हैं
क्लस्टरिंग एक अनदेखे कोर बिंदु को चुनकर शुरू होती है, इसे एक नए क्लस्टर के रूप में चिह्नित करती है, फिर सभी बिंदुओं को पुनरावृत्त रूप से जोड़ती है जो इससे घनत्व-प्राप्य हैं (कोर बिंदु और उनके पड़ोसी, आदि)। सीमा बिंदुओं को निकटतम कोर के क्लस्टर में जोड़ा जाता है। सभी प्राप्य बिंदुओं का विस्तार करने के बाद, DBSCAN एक अन्य अनदेखे कोर पर जाता है ताकि एक नया क्लस्टर शुरू किया जा सके। कोई भी बिंदु जो किसी भी कोर द्वारा नहीं पहुंचा, उसे शोर के रूप में लेबल किया जाता है
> [!TIP]
> *साइबर सुरक्षा में उपयोग के मामले:* DBSCAN नेटवर्क ट्रैफ़िक में विसंगति पहचान के लिए उपयोगी है। उदाहरण के लिए, सामान्य उपयोगकर्ता गतिविधि विशेषता स्थान में एक या अधिक घने क्लस्टर बना सकती है, जबकि नए हमले के व्यवहार बिखरे हुए बिंदुओं के रूप में प्रकट होते हैं जिन्हें DBSCAN शोर (आउटलेयर) के रूप में लेबल करेगा। इसका उपयोग नेटवर्क प्रवाह रिकॉर्ड को क्लस्टर करने के लिए किया गया है, जहां यह पोर्ट स्कैन या सेवा से इनकार ट्रैफ़िक को बिंदुओं के विरल क्षेत्रों के रूप में पहचान सकता है। एक और अनुप्रयोग मैलवेयर वेरिएंट को समूहित करना है: यदि अधिकांश नमूने परिवारों द्वारा क्लस्टर होते हैं लेकिन कुछ कहीं भी फिट नहीं होते हैं, तो वे कुछ शून्य-दिन के मैलवेयर हो सकते हैं। शोर को चिह्नित करने की क्षमता का अर्थ है कि सुरक्षा टीमें उन आउटलेयर की जांच पर ध्यान केंद्रित कर सकती हैं।
> *साइबर सुरक्षा में उपयोग के मामले:* DBSCAN नेटवर्क ट्रैफ़िक में विसंगति पहचान के लिए उपयोगी है। उदाहरण के लिए, सामान्य उपयोगकर्ता गतिविधि विशेषता स्थान में एक या अधिक घने क्लस्टर बना सकती है, जबकि नए हमले के व्यवहार बिखरे हुए बिंदुओं के रूप में प्रकट होते हैं जिन्हें DBSCAN शोर (आउटलेयर) के रूप में लेबल करेगा। इसका उपयोग नेटवर्क प्रवाह रिकॉर्ड को क्लस्टर करने के लिए किया गया है, जहां यह पोर्ट स्कैन या सेवा से इनकार ट्रैफ़िक को बिंदुओं के विरल क्षेत्रों के रूप में पहचान सकता है। एक और अनुप्रयोग मैलवेयर वेरिएंट को समूहित करना है: यदि अधिकांश नमूने परिवारों द्वारा क्लस्टर होते हैं लेकिन कुछ कहीं भी फिट नहीं होते, तो वे कुछ शून्य-दिन के मैलवेयर हो सकते हैं। शोर को चिह्नित करने की क्षमता का अर्थ है कि सुरक्षा टीमें उन आउटलेयर की जांच पर ध्यान केंद्रित कर सकती हैं।
#### धारणाएँ और सीमाएँ
**धारणाएँ और ताकतें:** DBSCAN गोलाकार क्लस्टरों की धारणा नहीं करता है - यह मनमाने आकार के क्लस्टर (यहां तक कि श्रृंखला के समान या निकटवर्ती क्लस्टर) खोज सकता है। यह डेटा घनत्व के आधार पर स्वचालित रूप से क्लस्टरों की संख्या निर्धारित करता है और प्रभावी रूप से आउटलेयर को शोर के रूप में पहचान सकता है। यह असामान्य आकृतियों और शोर के साथ वास्तविक दुनिया के डेटा के लिए शक्तिशाली बनाता है। यह आउटलेयर के प्रति मजबूत है (K-Means के विपरीत, जो उन्हें क्लस्टरों में मजबूर करता है)। यह तब अच्छी तरह से काम करता है जब क्लस्टरों की घनत्व लगभग समान हो।
**धारणाएँ और ताकतें:** DBSCAN गोलाकार क्लस्टरों की धारणा नहीं करता है - यह मनमाने आकार के क्लस्टर (यहां तक कि श्रृंखला के समान या निकटवर्ती क्लस्टर) खोज सकता है। यह डेटा घनत्व के आधार पर स्वचालित रूप से क्लस्टरों की संख्या निर्धारित करता है और प्रभावी रूप से आउटलेयर को शोर के रूप में पहचान सकता है। यह असामान्य आकृतियों और शोर के साथ वास्तविक-विश्व डेटा के लिए शक्तिशाली बनाता है। यह आउटलेयर के प्रति मजबूत है (K-Means के विपरीत, जो उन्हें क्लस्टरों में मजबूर करता है)। यह तब अच्छी तरह से काम करता है जब क्लस्टरों की घनत्व लगभग समान हो।
**सीमाएँ:** DBSCAN का प्रदर्शन उचित ε और MinPts मान चुनने पर निर्भर करता है। यह विभिन्न घनत्व वाले डेटा के साथ संघर्ष कर सकता है - एकल ε घने और विरल क्लस्टरों दोनों को समायोजित नहीं कर सकता। यदि ε बहुत छोटा है, तो यह अधिकांश बिंदुओं को शोर के रूप में लेबल करता है; बहुत बड़ा होने पर, और क्लस्टर गलत तरीके से मिल सकते हैं। इसके अलावा, DBSCAN बहुत बड़े डेटा सेट पर अप्रभावी हो सकता है (नासमझी से $O(n^2)$, हालांकि स्थानिक अनुक्रमण मदद कर सकता है)। उच्च-आयामी विशेषता स्थानों में, "ε के भीतर दूरी" का विचार कम अर्थपूर्ण हो सकता है (आयाम की शाप), और DBSCAN को सावधानीपूर्वक पैरामीटर ट्यूनिंग की आवश्यकता हो सकती है या यह सहज क्लस्टरों को खोजने में विफल हो सकता है। इसके बावजूद, HDBSCAN जैसे विस्तार कुछ मुद्दों (जैसे विभिन्न घनत्व) को संबोधित करते हैं।
**सीमाएँ:** DBSCAN का प्रदर्शन उचित ε और MinPts मान चुनने पर निर्भर करता है। यह विभिन्न घनत्व वाले डेटा के साथ संघर्ष कर सकता है - एकल ε घने और विरल क्लस्टरों दोनों को समायोजित नहीं कर सकता। यदि ε बहुत छोटा है, तो यह अधिकांश बिंदुओं को शोर के रूप में लेबल करता है; बहुत बड़ा होने पर, और क्लस्टर गलत तरीके से मिल सकते हैं। इसके अलावा, DBSCAN बहुत बड़े डेटा सेट पर अप्रभावी हो सकता है (नासमझी से $O(n^2)$, हालांकि स्थानिक अनुक्रमण मदद कर सकता है)। उच्च-आयामी विशेषता स्थानों में, "ε के भीतर दूरी" की अवधारणा कम अर्थपूर्ण हो सकती है (आयाम की शाप), और DBSCAN को सावधानीपूर्वक पैरामीटर ट्यूनिंग की आवश्यकता हो सकती है या यह सहज क्लस्टरों को खोजने में विफल हो सकता है। इसके बावजूद, HDBSCAN जैसे विस्तार कुछ मुद्दों (जैसे विभिन्न घनत्व) को संबोधित करते हैं।
<details>
<summary>उदाहरण -- शोर के साथ क्लस्टरिंग
@ -157,13 +157,13 @@ In this snippet, we tuned `eps` and `min_samples` to suit our data scale (15.0 i
PCA एक **आयाम घटाने** की तकनीक है जो एक नए सेट के आर्थोगोनल अक्ष (प्रधान घटक) खोजती है जो डेटा में अधिकतम विविधता को कैप्चर करती है। सरल शब्दों में, PCA डेटा को एक नए समन्वय प्रणाली पर घुमाता और प्रक्षिप्त करता है ताकि पहला प्रधान घटक (PC1) संभवतः सबसे बड़ी विविधता को समझाए, दूसरा PC (PC2) PC1 के लिए सबसे बड़ी विविधता को समझाए, और इसी तरह। गणितीय रूप से, PCA डेटा के सहसंवेदन मैट्रिक्स के गुणांक वेक्टर की गणना करता है - ये गुणांक वेक्टर प्रधान घटक दिशाएँ हैं, और संबंधित गुणांक मान यह दर्शाते हैं कि प्रत्येक द्वारा समझाई गई विविधता की मात्रा कितनी है। इसका उपयोग अक्सर विशेषता निष्कर्षण, दृश्यता, और शोर कमी के लिए किया जाता है।
ध्यान दें कि यह उपयोगी है यदि डेटा सेट के आयामों में **महत्वपूर्ण रैखिक निर्भरताएँ या सहसंबंध**ोते हैं।
ध्यान दें कि यह उपयोगी है यदि डेटा सेट के आयामों में **महत्वपूर्ण रैखिक निर्भरताएँ या सहसंबंध** हैं।
PCA डेटा के प्रधान घटकों की पहचान करके काम करता है, जो अधिकतम विविधता की दिशाएँ होती हैं। PCA में शामिल चरण हैं:
1. **मानकीकरण**: डेटा को केंद्रित करें, औसत को घटाकर और इसे इकाई विविधता में स्केल करके।
2. **सहसंवेदन मैट्रिक्स**: मानकीकृत डेटा के सहसंवेदन मैट्रिक्स की गणना करें ताकि विशेषताओं के बीच संबंधों को समझा जा सके।
3. **गुणांक मान विघटन**: गुणांक मान विघटन को सहसंवेदन मैट्रिक्स पर करें ताकि गुणांक मान और गुणांक वेक्टर प्राप्त हो सकें।
4. **प्रधान घटकों का चयन करें**: गुणांक मानों को अवरोही क्रम में क्रमबद्ध करें और सबसे बड़े गुणांक मानों के लिए शीर्ष K गुणांक वेक्टर का चयन करें। ये गुणांक वेक्टर नए विशेषता स्थान का निर्माण करते हैं।
4. **प्रधान घटक चुनें**: गुणांक मानों को अवरोही क्रम में क्रमबद्ध करें और सबसे बड़े गुणांक मानों के लिए शीर्ष K गुणांक वेक्टर चुनें। ये गुणांक वेक्टर नए विशेषता स्थान का निर्माण करते हैं।
5. **डेटा को रूपांतरित करें**: चयनित प्रधान घटकों का उपयोग करके मूल डेटा को नए विशेषता स्थान पर प्रक्षिप्त करें।
PCA का उपयोग डेटा दृश्यता, शोर कमी, और अन्य मशीन लर्निंग एल्गोरिदम के लिए पूर्व-प्रसंस्करण चरण के रूप में व्यापक रूप से किया जाता है। यह डेटा के आयाम को कम करने में मदद करता है जबकि इसकी आवश्यक संरचना को बनाए रखता है।
@ -171,26 +171,26 @@ PCA का उपयोग डेटा दृश्यता, शोर कम
गुणांक मान एक स्केलर है जो उसके संबंधित गुणांक वेक्टर द्वारा कैप्चर की गई विविधता की मात्रा को दर्शाता है। एक गुणांक वेक्टर विशेषता स्थान में एक दिशा का प्रतिनिधित्व करता है जिसके साथ डेटा सबसे अधिक भिन्न होता है।
कल्पना करें कि A एक वर्ग मैट्रिक्स है, और v एक गैर-शून्य वेक्टर है ताकि: `A * v = λ * v`
कल्पना करें कि A एक वर्ग मैट्रिक्स है, और v एक गैर-शून्य वेक्टर है ऐसा कि: `A * v = λ * v`
जहाँ:
- A एक वर्ग मैट्रिक्स है जैसे [ [1, 2], [2, 1]] (जैसे, सहसंवेदन मैट्रिक्स)
- v एक गुणांक वेक्टर है (जैसे, [1, 1])
फिर, `A * v = [ [1, 2], [2, 1]] * [1, 1] = [3, 3]` जो गुणांक मान λ होगा जो गुणांक वेक्टर v से गुणा किया गया है, जिससे गुणांक मान λ = 3 बनता है
फिर, `A * v = [ [1, 2], [2, 1]] * [1, 1] = [3, 3]` जो गुणांक मान λ होगा गुणांक वेक्टर v के साथ, जिससे गुणांक मान λ = 3 होगा
#### PCA में गुणांक मान और गुणांक वेक्टर
आइए इसे एक उदाहरण के साथ समझाते हैं। कल्पना करें कि आपके पास 100x100 पिक्सल के चेहरे की कई ग्रे स्केल तस्वीरों का एक डेटा सेट है। प्रत्येक पिक्सल को एक विशेषता माना जा सकता है, इसलिए आपके पास प्रति छवि 10,000 विशेषताएँ हैं (या प्रति छवि 10000 घटकों का एक वेक्टर)। यदि आप PCA का उपयोग करके इस डेटा सेट के आयाम को कम करना चाहते हैं, तो आप इन चरणों का पालन करेंगे:
आइए इसे एक उदाहरण के साथ समझाते हैं। कल्पना करें कि आपके पास 100x100 पिक्सल के चेहरे की ग्रे स्केल तस्वीरों का एक डेटा सेट है। प्रत्येक पिक्सल को एक विशेषता माना जा सकता है, इसलिए आपके पास प्रति छवि 10,000 विशेषताएँ हैं (या प्रति छवि 10000 घटकों का एक वेक्टर)। यदि आप PCA का उपयोग करके इस डेटा सेट के आयाम को कम करना चाहते हैं, तो आप इन चरणों का पालन करेंगे:
1. **मानकीकरण**: डेटा को केंद्रित करें, प्रत्येक विशेषता (पिक्सल) के औसत को डेटा सेट से घटाकर।
2. **सहसंवेदन मैट्रिक्स**: मानकीकृत डेटा के सहसंवेदन मैट्रिक्स की गणना करें, जो यह कैप्चर करता है कि विशेषताएँ (पिक्सल) एक साथ कैसे भिन्न होती हैं।
- ध्यान दें कि दो चर (इस मामले में पिक्सल) के बीच सहसंवेदन यह दर्शाता है कि वे एक साथ कितनी बदलते हैं, इसलिए यहाँ विचार यह है कि यह पता लगाना है कि कौन से पिक्सल एक रैखिक संबंध के साथ एक साथ बढ़ने या घटने की प्रवृत्ति रखते हैं।
- उदाहरण के लिए, यदि पिक्सल 1 और पिक्सल 2 एक साथ बढ़ने की प्रवृत्ति रखते हैं, तो उनके बीच का सहसंवेदन सकारात्मक होगा।
- सहसंवेदन मैट्रिक्स एक 10,000x10,000 मैट्रिक्स होगा जहाँ प्रत्येक प्रविष्टि दो पिक्सल के बीच के सहसंवेदन का प्रतिनिधित्व करती है।
3. **गुणांक मान समीकरण को हल करें**: हल करने के लिए गुणांक मान समीकरण है `C * v = λ * v` जहाँ C सहसंवेदन मैट्रिक्स है, v गुणांक वेक्टर है, और λ गुणांक मान है। इसे हल करने के लिए निम्नलिखित विधियों का उपयोग किया जा सकता है:
- **गुणांक मान विघटन**: सहसंवेदन मैट्रिक्स पर गुणांक मान विघटन करें ताकि गुणांक मान और गुणांक वेक्टर प्राप्त हो सकें।
- उदाहरण के लिए, यदि पिक्सल 1 और पिक्सल 2 एक साथ बढ़ने की प्रवृत्ति रखते हैं, तो उनके बीच सहसंवेदन सकारात्मक होगा।
- सहसंवेदन मैट्रिक्स एक 10,000x10,000 मैट्रिक्स होगा जहाँ प्रत्येक प्रविष्टि दो पिक्सलों के बीच सहसंवेदन का प्रतिनिधित्व करती है।
3. **गुणांक मान समीकरण हल करें**: हल करने के लिए गुणांक मान समीकरण है `C * v = λ * v` जहाँ C सहसंवेदन मैट्रिक्स है, v गुणांक वेक्टर है, और λ गुणांक मान है। इसे हल करने के लिए निम्नलिखित विधियों का उपयोग किया जा सकता है:
- **गुणांक मान विघटन**: गुणांक मान विघटन को सहसंवेदन मैट्रिक्स पर करें ताकि गुणांक मान और गुणांक वेक्टर प्राप्त हो सकें।
- **सिंगुलर वैल्यू डिकंपोजिशन (SVD)**: वैकल्पिक रूप से, आप डेटा मैट्रिक्स को सिंगुलर मानों और वेक्टरों में विघटित करने के लिए SVD का उपयोग कर सकते हैं, जो प्रधान घटक भी प्रदान कर सकता है।
4. **प्रधान घटकों का चयन करें**: गुणांक मानों को अवरोही क्रम में क्रमबद्ध करें और सबसे बड़े गुणांक मानों के लिए शीर्ष K गुणांक वेक्टर का चयन करें। ये गुणांक वेक्टर डेटा में अधिकतम विविधता की दिशाओं का प्रतिनिधित्व करते हैं।
4. **प्रधान घटक चुनें**: गुणांक मानों को अवरोही क्रम में क्रमबद्ध करें और सबसे बड़े गुणांक मानों के लिए शीर्ष K गुणांक वेक्टर चुनें। ये गुणांक वेक्टर डेटा में अधिकतम विविधता की दिशाओं का प्रतिनिधित्व करते हैं।
> [!TIP]
> *साइबर सुरक्षा में उपयोग के मामले:* सुरक्षा में PCA का एक सामान्य उपयोग विसंगति पहचान के लिए विशेषता कमी है। उदाहरण के लिए, 40+ नेटवर्क मैट्रिक्स (जैसे NSL-KDD विशेषताएँ) के साथ एक घुसपैठ पहचान प्रणाली PCA का उपयोग करके कुछ घटकों में घटा सकती है, डेटा को दृश्यता के लिए संक्षिप्त कर सकती है या क्लस्टरिंग एल्गोरिदम में फीड कर सकती है। विश्लेषक पहले दो प्रधान घटकों के स्थान में नेटवर्क ट्रैफ़िक को प्लॉट कर सकते हैं यह देखने के लिए कि क्या हमले सामान्य ट्रैफ़िक से अलग होते हैं। PCA भी पुनरावृत्त विशेषताओं (जैसे भेजे गए बाइट्स बनाम प्राप्त बाइट्स यदि वे सहसंबंधित हैं) को समाप्त करने में मदद कर सकता है ताकि पहचान एल्गोरिदम अधिक मजबूत और तेज़ हो सकें।
@ -223,20 +223,19 @@ print("Original shape:", data_4d.shape, "Reduced shape:", data_2d.shape)
# We can examine a few transformed points
print("First 5 data points in PCA space:\n", data_2d[:5])
```
यहां हमने पहले के सामान्य ट्रैफ़िक क्लस्टरों को लिया और प्रत्येक डेटा बिंदु को दो अतिरिक्त विशेषताओं (पैकेट और त्रुटियाँ) के साथ विस्तारित किया जो बाइट्स और अवधि के साथ सहसंबंधित हैं। फिर PCA का उपयोग 4 विशेषताओं को 2 प्रमुख घटकों में संकुचित करने के लिए किया जाता है। हम व्याख्यायित विविधता अनुपात प्रिंट करते हैं, जो यह दिखा सकता है कि, कहने के लिए, >95% विविधता 2 घटकों द्वारा कैप्चर की गई है (जिसका अर्थ है कि जानकारी का थोड़ा नुकसान हुआ है)। आउटपुट यह भी दिखाता है कि डेटा आकार (1500, 4) से (1500, 2) में घट रहा है। PCA स्पेस में पहले कुछ बिंदुओं को उदाहरण के रूप में दिया गया है। व्यावहारिक रूप से, कोई डेटा_2डी को प्लॉट कर सकता है ताकि यह दृश्य रूप से जांच सके कि क्या क्लस्टर अलग-अलग हैं। यदि कोई विसंगति मौजूद थी, तो कोई इसे PCA-स्पेस में मुख्य क्लस्टर से दूर एक बिंदु के रूप में देख सकता है। इस प्रकार PCA जटिल डेटा को मानव व्याख्या के लिए या अन्य एल्गोरिदम के लिए इनपुट के रूप में प्रबंधनीय रूप में संक्षिप्त करने में मदद करता है।
यहां हमने पहले के सामान्य ट्रैफ़िक क्लस्टरों को लिया और प्रत्येक डेटा बिंदु को दो अतिरिक्त विशेषताओं (पैकेट और त्रुटियाँ) के साथ विस्तारित किया जो बाइट्स और अवधि के साथ सहसंबंधित हैं। फिर PCA का उपयोग 4 विशेषताओं को 2 प्रमुख घटकों में संकुचित करने के लिए किया जाता है। हम व्याख्यायित विविधता अनुपात प्रिंट करते हैं, जो यह दिखा सकता है कि, कहने के लिए, >95% विविधता 2 घटकों द्वारा कैप्चर की गई है (जिसका अर्थ है कि जानकारी का थोड़ा नुकसान हुआ है)। आउटपुट यह भी दिखाता है कि डेटा आकार (1500, 4) से (1500, 2) में घट रहा है। PCA स्पेस में पहले कुछ बिंदुओं को उदाहरण के रूप में दिया गया है। व्यावहारिक रूप से, कोई डेटा_2डी को प्लॉट कर सकता है ताकि यह दृश्य रूप से जांच सके कि क्या क्लस्टर अलग-अलग हैं। यदि कोई विसंगति मौजूद थी, तो कोई इसे PCA-स्थान में मुख्य क्लस्टर से दूर एक बिंदु के रूप में देख सकता है। इस प्रकार PCA जटिल डेटा को मानव व्याख्या के लिए या अन्य एल्गोरिदम के लिए इनपुट के रूप में प्रबंधनीय रूप में संकुचित करने में मदद करता है।
</details>
### Gaussian Mixture Models (GMM)
एक Gaussian Mixture Model मानता है कि डेटा **कई Gaussian (सामान्य) वितरणों के मिश्रण से उत्पन्न होता है जिनके अज्ञात पैरामीटर** होते हैं। मूल रूप से, यह एक संभाव्य क्लस्टरिंग मॉडल है: यह प्रत्येक बिंदु को K Gaussian घटकों में से एक को धीरे-धीरे असाइन करने की कोशिश करता है। प्रत्येक Gaussian घटक k का एक औसत वेक्टर (μ_k), सहवर्तन मैट्रिक्स (Σ_k), और एक मिश्रण वजन (π_k) होता है जो दर्शाता है कि वह क्लस्टर कितना प्रचलित है। K-Means के विपरीत जो "कठोर" असाइनमेंट करता है, GMM प्रत्येक बिंदु को प्रत्येक क्लस्टर में शामिल होने की संभावना देता है।
एक Gaussian Mixture Model मानता है कि डेटा **अज्ञात पैरामीटर के साथ कई Gaussian (सामान्य) वितरणों के मिश्रण से उत्पन्न होता है**। मूल रूप से, यह एक संभाव्य क्लस्टरिंग मॉडल है: यह प्रत्येक बिंदु को K Gaussian घटकों में से एक को धीरे-धीरे असाइन करने की कोशिश करता है। प्रत्येक Gaussian घटक k का एक औसत वेक्टर (μ_k), सहवर्तन मैट्रिक्स (Σ_k), और एक मिश्रण वजन (π_k) होता है जो दर्शाता है कि वह क्लस्टर कितना प्रचलित है। K-Means के विपरीत जो "कठोर" असाइनमेंट करता है, GMM प्रत्येक बिंदु को प्रत्येक क्लस्टर में शामिल होने की संभावना देता है।
GMM फिटिंग आमतौर पर Expectation-Maximization (EM) एल्गोरिदम के माध्यम से की जाती है:
- **Initialization**: औसत, सहवर्तन, और मिश्रण गुणांक के लिए प्रारंभिक अनुमान के साथ शुरू करें (या K-Means परिणामों का उपयोग प्रारंभिक बिंदु के रूप में करें)।
- **E-step (Expectation)**: वर्तमान पैरामीटर के आधार पर, प्रत्येक बिंदु के लिए प्रत्येक क्लस्टर की जिम्मेदारी की गणना करें: मूल रूप से `r_nk = P(z_k | x_n)` जहां z_k वह छिपा हुआ चर है जो बिंदु x_n के लिए क्लस्टर सदस्यता को इंगित करता है। यह बेयस के प्रमेय का उपयोग करके किया जाता है, जहां हम वर्तमान पैरामीटर के आधार पर प्रत्येक बिंदु के प्रत्येक क्लस्टर में शामिल होने की पश्चात संभाव्यता की गणना करते हैं। जिम्मेदारियों की गणना इस प्रकार की जाती है:
- **E-step (Expectation)**: वर्तमान पैरामीटर के आधार पर, प्रत्येक बिंदु के लिए प्रत्येक क्लस्टर की जिम्मेदारी की गणना करें: मूल रूप से `r_nk = P(z_k | x_n)` जहां z_k वह अंतर्निहित चर है जो बिंदु x_n के लिए क्लस्टर सदस्यता को इंगित करता है। यह बेयस के प्रमेय का उपयोग करके किया जाता है, जहां हम वर्तमान पैरामीटर के आधार पर प्रत्येक बिंदु के लिए प्रत्येक क्लस्टर में शामिल होने की पश्चात संभाव्यता की गणना करते हैं। जिम्मेदारियों की गणना इस प्रकार की जाती है:
```math
r_{nk} = \frac{\pi_k \mathcal{N}(x_n | \mu_k, \Sigma_k)}{\sum_{j=1}^{K} \pi_j \mathcal{N}(x_n | \mu_j, \Sigma_j)}
```
@ -254,11 +253,11 @@ r_{nk} = \frac{\pi_k \mathcal{N}(x_n | \mu_k, \Sigma_k)}{\sum_{j=1}^{K} \pi_j \m
परिणाम एक सेट Gaussian वितरणों का होता है जो सामूहिक रूप से समग्र डेटा वितरण को मॉडल करता है। हम प्रत्येक बिंदु को उच्चतम संभावना वाले Gaussian में असाइन करके क्लस्टर करने के लिए फिट किए गए GMM का उपयोग कर सकते हैं, या अनिश्चितता के लिए संभावनाओं को बनाए रख सकते हैं। कोई नए बिंदुओं की संभावना का मूल्यांकन भी कर सकता है यह देखने के लिए कि क्या वे मॉडल में फिट होते हैं (जो विसंगति पहचान के लिए उपयोगी है)।
> [!TIP]
> *साइबर सुरक्षा में उपयोग के मामले:* GMM का उपयोग विसंगति पहचान के लिए सामान्य डेटा के वितरण को मॉडल करने के लिए किया जा सकता है: जो भी बिंदु सीखे गए मिश्रण के तहत बहुत कम संभावना के साथ है, उसे विसंगति के रूप में चिह्नित किया जाता है। उदाहरण के लिए, आप वैध नेटवर्क ट्रैफ़िक विशेषताओं पर GMM को प्रशिक्षित कर सकते हैं; एक हमलावर कनेक्शन जो किसी भी सीखे गए क्लस्टर के समान नहीं है, उसकी संभावना कम होगी। GMM का उपयोग उन गतिविधियों को क्लस्टर करने के लिए भी किया जाता है जहां क्लस्टर के आकार और आकृतियाँ भिन्न हो सकती हैं - जैसे, व्यवहार प्रोफाइल के आधार पर उपयोगकर्ताओं को समूहित करना, जहां प्रत्येक प्रोफाइल की विशेषताएँ Gaussian जैसी हो सकती हैं लेकिन अपनी स्वयं की विविधता संरचना के साथ। एक और परिदृश्य: फ़िशिंग पहचान में, वैध ईमेल विशेषताएँ एक Gaussian क्लस्टर बना सकती हैं, ज्ञात फ़िशिंग एक और, और नए फ़िशिंग अभियानों को या तो एक अलग Gaussian के रूप में या मौजूदा मिश्रण के सापेक्ष कम संभावना वाले बिंदुओं के रूप में दिखा सकते हैं।
> *साइबर सुरक्षा में उपयोग के मामले:* GMM का उपयोग विसंगति पहचान के लिए सामान्य डेटा के वितरण को मॉडल करने के लिए किया जा सकता है: जो भी बिंदु सीखे गए मिश्रण के तहत बहुत कम संभावना के साथ है, उसे विसंगति के रूप में चिह्नित किया जाता है। उदाहरण के लिए, आप वैध नेटवर्क ट्रैफ़िक विशेषताओं पर GMM को प्रशिक्षित कर सकते हैं; एक हमलावर कनेक्शन जो किसी भी सीखे गए क्लस्टर के समान नहीं है, उसकी संभावना कम होगी। GMM का उपयोग उन गतिविधियों को क्लस्टर करने के लिए भी किया जाता है जहां क्लस्टर के आकार अलग-अलग हो सकते हैं - जैसे, व्यवहार प्रोफाइल के आधार पर उपयोगकर्ताओं को समूहित करना, जहां प्रत्येक प्रोफाइल की विशेषताएँ Gaussian जैसी हो सकती हैं लेकिन अपनी स्वयं की विविधता संरचना के साथ। एक और परिदृश्य: फ़िशिंग पहचान में, वैध ईमेल विशेषताएँ एक Gaussian क्लस्टर बना सकती हैं, ज्ञात फ़िशिंग एक और, और नए फ़िशिंग अभियानों को या तो एक अलग Gaussian के रूप में या मौजूदा मिश्रण के सापेक्ष कम संभावना वाले बिंदुओं के रूप में दिखा सकते हैं।
#### Assumptions and Limitations
GMM K-Means का एक सामान्यीकरण है जो सहवर्तन को शामिल करता है, इसलिए क्लस्टर अंडाकार (केवल गोलाकार नहीं) हो सकते हैं। यह विभिन्न आकारों और आकृतियों के क्लस्टरों को संभालता है यदि सहवर्तन पूर्ण है। नरम क्लस्टरिंग एक लाभ है जब क्लस्टर सीमाएँ धुंधली होती हैं - जैसे, साइबर सुरक्षा में, एक घटना में कई हमले के प्रकारों के लक्षण हो सकते हैं; GMM उस अनिश्चितता को संभावनाओं के साथ दर्शा सकता है। GMM डेटा का संभाव्य घनत्व अनुमान भी प्रदान करता है, जो आउटलेयर (सभी मिश्रण घटकों के तहत कम संभावना वाले बिंदु) का पता लगाने के लिए उपयोगी है।
GMM K-Means का एक सामान्यीकरण है जो सहवर्तन को शामिल करता है, इसलिए क्लस्टर अंडाकार (सिर्फ गोलाकार नहीं) हो सकते हैं। यह विभिन्न आकारों और आकृतियों के क्लस्टरों को संभालता है यदि सहवर्तन पूर्ण है। नरम क्लस्टरिंग एक लाभ है जब क्लस्टर सीमाएँ धुंधली होती हैं - जैसे, साइबर सुरक्षा में, एक घटना में कई हमले के प्रकारों के लक्षण हो सकते हैं; GMM उस अनिश्चितता को संभावनाओं के साथ दर्शा सकता है। GMM डेटा का संभाव्य घनत्व अनुमान भी प्रदान करता है, जो आउटलेयर (सभी मिश्रण घटकों के तहत कम संभावना वाले बिंदु) का पता लगाने के लिए उपयोगी है।
दूसरी ओर, GMM को घटकों की संख्या K निर्दिष्ट करने की आवश्यकता होती है (हालांकि कोई इसे चुनने के लिए BIC/AIC जैसे मानदंडों का उपयोग कर सकता है)। EM कभी-कभी धीरे-धीरे या स्थानीय इष्टतम पर संकुचित हो सकता है, इसलिए प्रारंभिककरण महत्वपूर्ण है (अक्सर EM को कई बार चलाया जाता है)। यदि डेटा वास्तव में Gaussian के मिश्रण का पालन नहीं करता है, तो मॉडल खराब फिट हो सकता है। एक Gaussian के केवल एक आउटलेयर को कवर करने के लिए सिकुड़ने का भी जोखिम होता है (हालांकि नियमितीकरण या न्यूनतम सहवर्तन सीमाएँ इसे कम कर सकती हैं)।
@ -283,13 +282,13 @@ log_likelihood = gmm.score_samples(sample_attack)
print("Cluster membership probabilities for sample attack:", probs)
print("Log-likelihood of sample attack under GMM:", log_likelihood)
```
इस कोड में, हम सामान्य ट्रैफ़िक पर 3 गॉसियन के साथ एक GMM को प्रशिक्षित करते हैं (मान लेते हैं कि हमें वैध ट्रैफ़िक के 3 प्रोफाइल पता हैं)। प्रिंट की गई औसत और सहवर्तन इन क्लस्टरों का वर्णन करती हैं (उदाहरण के लिए, एक औसत [50,500] के आसपास हो सकता है जो एक क्लस्टर के केंद्र के अनुरूप है, आदि)। फिर हम एक संदिग्ध कनेक्शन [duration=200, bytes=800] का परीक्षण करते हैं। predict_proba इस बिंदु के 3 क्लस्टरों में से प्रत्येक से संबंधित होने की संभावना देता है - हम उम्मीद करते हैं कि ये संभावनाएँ बहुत कम या अत्यधिक विकृत होंगी क्योंकि [200,800] सामान्य क्लस्टरों से बहुत दूर है। कुल score_samples (लॉग-लाइकलिहुड) प्रिंट किया जाता है; एक बहुत कम मान इंगित करता है कि बिंदु मॉडल में अच्छी तरह से फिट नहीं होता है, इसे एक विसंगति के रूप में चिह्नित करता है। प्रैक्टिस में, कोई लॉग-लाइकलिहुड (या अधिकतम संभावना) पर एक थ्रेशोल्ड सेट कर सकता है यह तय करने के लिए कि क्या एक बिंदु पर्याप्त रूप से असंभावित है कि इसे दुर्भावनापूर्ण माना जाए। इस प्रकार GMM विसंगति पहचान करने का एक सिद्ध तरीका प्रदान करता है और यह भी नरम क्लस्टर प्रदान करता है जो अनिश्चितता को स्वीकार करते हैं।
इस कोड में, हम सामान्य ट्रैफ़िक पर 3 गॉसियन के साथ एक GMM को प्रशिक्षित करते हैं (मान लेते हैं कि हमें वैध ट्रैफ़िक के 3 प्रोफाइल पता हैं)। प्रिंट की गई औसत और सहवर्तन इन क्लस्टरों का वर्णन करती हैं (उदाहरण के लिए, एक औसत [50,500] के आसपास हो सकता है जो एक क्लस्टर के केंद्र के लिए है, आदि)। फिर हम एक संदिग्ध कनेक्शन [duration=200, bytes=800] का परीक्षण करते हैं। predict_proba इस बिंदु के 3 क्लस्टरों में से प्रत्येक से संबंधित होने की संभावना देता है - हम उम्मीद करते हैं कि ये संभावनाएँ बहुत कम या अत्यधिक विकृत होंगी क्योंकि [200,800] सामान्य क्लस्टरों से बहुत दूर है। कुल score_samples (लॉग-लाइकलिहुड) प्रिंट किया जाता है; एक बहुत कम मान इंगित करता है कि बिंदु मॉडल में अच्छी तरह से फिट नहीं होता है, इसे एक विसंगति के रूप में चिह्नित करता है। प्रैक्टिस में, कोई लॉग-लाइकलिहुड (या अधिकतम संभावना) पर एक थ्रेशोल्ड सेट कर सकता है यह तय करने के लिए कि क्या एक बिंदु पर्याप्त रूप से असंभावित है कि इसे दुर्भावनापूर्ण माना जाए। इस प्रकार GMM विसंगति पहचान करने का एक सिद्ध तरीका प्रदान करता है और यह भी नरम क्लस्टर प्रदान करता है जो अनिश्चितता को स्वीकार करते हैं।
### Isolation Forest
**Isolation Forest** एक एंसेंबल विसंगति पहचान एल्गोरिदम है जो बिंदुओं को यादृच्छिक रूप से अलग करने के विचार पर आधारित है। सिद्धांत यह है कि विसंगतियाँ कम और भिन्न होती हैं, इसलिए उन्हें सामान्य बिंदुओं की तुलना में अलग करना आसान होता है। एक Isolation Forest कई बाइनरी आइसोलेशन ट्री (यादृच्छिक निर्णय वृक्ष) बनाता है जो डेटा को यादृच्छिक रूप से विभाजित करता है। एक वृक्ष में प्रत्येक नोड पर, एक यादृच्छिक विशेषता का चयन किया जाता है और उस विशेषता के डेटा के लिए न्यूनतम और अधिकतम के बीच एक यादृच्छिक विभाजन मान चुना जाता है। यह विभाजन डेटा को दो शाखाओं में विभाजित करता है। वृक्ष को तब तक बढ़ाया जाता है जब तक प्रत्येक बिंदु अपने स्वयं के पत्ते में अलग नहीं हो जाता या अधिकतम वृक्ष ऊँचाई तक नहीं पहुँच जाता
**Isolation Forest** एक एंसेंबल विसंगति पहचान एल्गोरिदम है जो बिंदुओं को यादृच्छिक रूप से अलग करने के विचार पर आधारित है। सिद्धांत यह है कि विसंगतियाँ कम और भिन्न होती हैं, इसलिए उन्हें सामान्य बिंदुओं की तुलना में अलग करना आसान होता है। एक Isolation Forest कई बाइनरी आइसोलेशन ट्री (यादृच्छिक निर्णय वृक्ष) बनाता है जो डेटा को यादृच्छिक रूप से विभाजित करते हैं। एक वृक्ष में प्रत्येक नोड पर, एक यादृच्छिक विशेषता का चयन किया जाता है और उस विशेषता के लिए डेटा के न्यूनतम और अधिकतम के बीच एक यादृच्छिक विभाजन मान चुना जाता है। यह विभाजन डेटा को दो शाखाओं में विभाजित करता है। वृक्ष को तब तक बढ़ाया जाता है जब तक प्रत्येक बिंदु अपने स्वयं के पत्ते में अलग नहीं हो जाता या अधिकतम वृक्ष ऊँचाई नहीं पहुँच जाती
विसंगति पहचान इन यादृच्छिक वृक्षों में प्रत्येक बिंदु की पथ लंबाई को देखकर की जाती है - बिंदु को अलग करने के लिए आवश्यक विभाजनों की संख्या। सहज रूप से, विसंगतियाँ (आउटलेयर) जल्दी अलग होने की प्रवृत्ति रखती हैं क्योंकि एक यादृच्छिक विभाजन एक आउटलेयर (जो एक विरल क्षेत्र में होता है) को सामान्य बिंदु की तुलना में अलग करने की अधिक संभावना होती है जो एक घनी क्लस्टर में होता है। Isolation Forest सभी वृक्षों के औसत पथ लंबाई से एक विसंगति स्कोर की गणना करता है: छोट औसत पथ → अधिक विसंगति। स्कोर आमतौर पर [0,1] पर सामान्यीकृत होते हैं जहाँ 1 का अर्थ है बहुत संभावित विसंगति।
विसंगति पहचान इन यादृच्छिक वृक्षों में प्रत्येक बिंदु की पथ लंबाई को देखकर की जाती है - बिंदु को अलग करने के लिए आवश्यक विभाजनों की संख्या। सहज रूप से, विसंगतियाँ (आउटलेयर) जल्दी अलग होने की प्रवृत्ति रखती हैं क्योंकि एक यादृच्छिक विभाजन एक आउटलेयर (जो एक विरल क्षेत्र में होता है) को सामान्य बिंदु की तुलना में अलग करने की अधिक संभावना होती है जो एक घनी क्लस्टर में होता है। Isolation Forest सभी वृक्षों के औसत पथ लंबाई से एक विसंगति स्कोर की गणना करता है: छोट औसत पथ → अधिक विसंगति। स्कोर आमतौर पर [0,1] पर सामान्यीकृत होते हैं जहाँ 1 का अर्थ है बहुत संभावित विसंगति।
> [!TIP]
> *साइबर सुरक्षा में उपयोग के मामले:* Isolation Forest का सफलतापूर्वक उपयोग घुसपैठ पहचान और धोखाधड़ी पहचान में किया गया है। उदाहरण के लिए, नेटवर्क ट्रैफ़िक लॉग पर एक Isolation Forest को प्रशिक्षित करें जिसमें ज्यादातर सामान्य व्यवहार हो; वन अजीब ट्रैफ़िक (जैसे एक IP जो एक अनसुने पोर्ट का उपयोग करता है या एक असामान्य पैकेट आकार पैटर्न) के लिए छोटे पथ उत्पन्न करेगा, इसे निरीक्षण के लिए चिह्नित करेगा। चूंकि इसे लेबल किए गए हमलों की आवश्यकता नहीं होती है, यह अज्ञात हमले के प्रकारों का पता लगाने के लिए उपयुक्त है। इसे उपयोगकर्ता लॉगिन डेटा पर भी तैनात किया जा सकता है ताकि खाता अधिग्रहण का पता लगाया जा सके (असामान्य लॉगिन समय या स्थान जल्दी अलग हो जाते हैं)। एक उपयोग के मामले में, एक Isolation Forest एक उद्यम की सुरक्षा कर सकता है प्रणाली मैट्रिक्स की निगरानी करके और जब मैट्रिक्स (CPU, नेटवर्क, फ़ाइल परिवर्तनों) का एक संयोजन ऐतिहासिक पैटर्न से बहुत भिन्न दिखता है (छोटे आइसोलेशन पथ) तो एक अलर्ट उत्पन्न करता है।
@ -304,7 +303,7 @@ print("Log-likelihood of sample attack under GMM:", log_likelihood)
<summary>Example -- Detecting Outliers in Network Logs
</summary>
हम पहले के परीक्षण डेटा सेट (जिसमें सामान्य और कुछ हमले के बिंदु शामिल हैं) का उपयोग करेंगे और देखेंगे कि क्या एक Isolation Forest हमलों को अलग कर सकता है। हम मान लेंगे कि हम डेटा के ~15% को विसंगतिपूर्ण मानते हैं (प्रदर्शन के लिए)।
हम पहले के परीक्षण डेटा सेट (जिसमें सामान्य और कुछ हमले के बिंदु शामिल हैं) का उपयोग करेंगे और देखेंगे कि क्या एक Isolation Forest हमलों को अलग कर सकता है। हम मान लेंगे कि हम ~15% डेटा को विसंगतिपूर्ण मानते हैं (प्रदर्शन के लिए)।
```python
from sklearn.ensemble import IsolationForest
@ -322,11 +321,11 @@ print("Example anomaly scores (lower means more anomalous):", anomaly_scores[:5]
```
इस कोड में, हम `IsolationForest` को 100 पेड़ों के साथ स्थापित करते हैं और `contamination=0.15` सेट करते हैं (जिसका अर्थ है कि हम लगभग 15% विसंगतियों की अपेक्षा करते हैं; मॉडल अपने स्कोर थ्रेशोल्ड को इस तरह सेट करेगा कि ~15% बिंदुओं को चिह्नित किया जाए)। हम इसे `X_test_if` पर फिट करते हैं जिसमें सामान्य और हमले के बिंदुओं का मिश्रण होता है (नोट: सामान्यतः आप प्रशिक्षण डेटा पर फिट करते हैं और फिर नए डेटा पर भविष्यवाणी करते हैं, लेकिन यहाँ उदाहरण के लिए हम उसी सेट पर फिट और भविष्यवाणी करते हैं ताकि सीधे परिणाम देख सकें)।
आउटपुट पहले 20 बिंदुओं के लिए पूर्वानुमानित लेबल दिखाता है (जहाँ -1 विसंगति को इंगित करता है)। हम यह भी प्रिंट करते हैं कि कुल मिलाकर कितनी विसंगतियाँ पाई गईं और कुछ उदाहरण विसंगति स्कोर। हम अपेक्षा करते हैं कि 120 बिंदुओं में से लगभग 18 को -1 के रूप में लेबल किया जाएगा (क्योंकि संदूषण 15% था)। यदि हमारे 20 हमले के नमूने वास्तव में सबसे अधिक बाहरी हैं, तो उनमें से अधिकांश उन -1 पूर्वानुमानों में दिखाई देने चाहिए। विसंगति स्कोर (Isolation Forest का निर्णय कार्य) सामान्य बिंदुओं के लिए अधिक और विसंगतियों के लिए कम (अधिक नकारात्मक) होता है - हम कुछ मान प्रिंट करते हैं ताकि विभाजन को देख सकें। प्रैक्टिस में, कोई डेटा को स्कोर के अनुसार क्रमबद्ध कर सकता है ताकि शीर्ष बाहरी बिंदुओं को देखा जा सके और उनकी जांच की जा सके। इस प्रकार, Isolation Forest बड़े बिना लेबल वाले सुरक्षा डेटा के माध्यम से छानने और मानव विश्लेषण या आगे की स्वचालित जांच के लिए सबसे असामान्य उदाहरणों को चुनने का एक कुशल तरीका प्रदान करता है।
आउटपुट पहले 20 बिंदुओं के लिए पूर्वानुमानित लेबल दिखाता है (जहाँ -1 विसंगति को दर्शाता है)। हम यह भी प्रिंट करते हैं कि कुल मिलाकर कितनी विसंगतियाँ पाई गईं और कुछ उदाहरण विसंगति स्कोर। हम उम्मीद करते हैं कि 120 बिंदुओं में से लगभग 18 को -1 के रूप में लेबल किया जाएगा (क्योंकि संदूषण 15% था)। यदि हमारे 20 हमले के नमूने वास्तव में सबसे अधिक बाहरी हैं, तो उनमें से अधिकांश उन -1 पूर्वानुमानों में दिखाई देने चाहिए। विसंगति स्कोर (Isolation Forest का निर्णय कार्य) सामान्य बिंदुओं के लिए अधिक और विसंगतियों के लिए कम (अधिक नकारात्मक) होता है - हम कुछ मान प्रिंट करते हैं ताकि विभाजन को देख सकें। प्रैक्टिस में, कोई डेटा को स्कोर के अनुसार क्रमबद्ध कर सकता है ताकि शीर्ष बाहरी बिंदुओं को देखा जा सके और उनकी जांच की जा सके। इस प्रकार, Isolation Forest बड़े बिना लेबल वाले सुरक्षा डेटा के माध्यम से छानने और मानव विश्लेषण या आगे की स्वचालित जांच के लिए सबसे असामान्य उदाहरणों को चुनने का एक कुशल तरीका प्रदान करता है।
### t-SNE (t-Distributed Stochastic Neighbor Embedding)
**t-SNE** एक गैर-रेखीय आयाम घटाने की तकनीक है जो विशेष रूप से उच्च-आयामी डेटा को 2 या 3 आयामों में दृश्य बनाने के लिए डिज़ाइन की गई है। यह डेटा बिंदुओं के बीच समानताओं को संयुक्त संभाव्यता वितरण में परिवर्तित करता है और निम्न-आयामी प्रक्षिप्ति में स्थानीय पड़ोसों की संरचना को बनाए रखने की कोशिश करता है। सरल शब्दों में, t-SNE बिंदुओं को (मान लीजिए) 2D में इस तरह रखता है कि समान बिंदु (मूल स्थान में) एक साथ निकटता में होते हैं और असमान बिंदु उच्च संभाव्यता के साथ दूर होते हैं।
**t-SNE** एक गैर-रेखीय आयाम घटाने की तकनीक है जो विशेष रूप से उच्च-आयामी डेटा को 2 या 3 आयामों में दृश्य बनाने के लिए डिज़ाइन की गई है। यह डेटा बिंदुओं के बीच समानताओं को संयुक्त संभाव्यता वितरण में परिवर्तित करता है और निम्न-आयामी प्रक्षिप्ति में स्थानीय पड़ोसों की संरचना को बनाए रखने की कोशिश करता है। सरल शब्दों में, t-SNE बिंदुओं को (मान लीजिए) 2D में इस तरह रखता है कि समान बिंदु (मूल स्थान में) एक साथ निकटता में ते हैं और असमान बिंदु उच्च संभाव्यता के साथ दूर होते हैं।
एल्गोरिदम के दो मुख्य चरण हैं:
@ -334,22 +333,22 @@ print("Example anomaly scores (lower means more anomalous):", anomaly_scores[:5]
2. **निम्न-आयामी (जैसे 2D) स्थान में जोड़ीदार संबंधों की गणना करें:** प्रारंभ में, बिंदुओं को 2D में यादृच्छिक रूप से रखा जाता है। t-SNE इस मानचित्र में दूरी के लिए एक समान संभाव्यता परिभाषित करता है (एक स्टूडेंट t-वितरण कर्नेल का उपयोग करके, जिसमें गॉसियन की तुलना में भारी पूंछ होती है ताकि दूर के बिंदुओं को अधिक स्वतंत्रता मिल सके)।
3. **ग्रेडिएंट डिसेंट:** t-SNE फिर उच्च-D संबंध वितरण और निम्न-D के बीच KullbackLeibler (KL) विभाजन को न्यूनतम करने के लिए 2D में बिंदुओं को क्रमिक रूप से स्थानांतरित करता है। इससे 2D व्यवस्था उच्च-D संरचना को यथासंभव दर्शाती है - जो बिंदु मूल स्थान में निकट थे वे एक-दूसरे को आकर्षित करेंगे, और जो दूर हैं वे एक-दूसरे को दूर करेंगे, जब तक कि संतुलन नहीं पाया जाता।
परिणाम अक्सर एक दृश्यात्मक रूप से अर्थपूर्ण स्कैटर प्लॉट होता है जहाँ डेटा में समूह स्पष्ट हो जाते हैं।
परिणाम अक्सर एक दृश्यात्मक रूप से अर्थपूर्ण स्कैटर प्लॉट होता है जहाँ डेटा में क्लस्टर स्पष्ट हो जाते हैं।
> [!TIP]
> *साइबर सुरक्षा में उपयोग के मामले:* t-SNE अक्सर **मानव विश्लेषण के लिए उच्च-आयामी सुरक्षा डेटा को दृश्य बनाने के लिए** उपयोग किया जाता है। उदाहरण के लिए, एक सुरक्षा संचालन केंद्र में, विश्लेषक एक घटना डेटा सेट ले सकते हैं जिसमें दर्जनों विशेषताएँ (पोर्ट नंबर, आवृत्तियाँ, बाइट गिनती, आदि) होती हैं और t-SNE का उपयोग करके 2D प्लॉट उत्पन्न कर सकते हैं। हमले इस प्लॉट में अपने स्वयं के समूह बना सकते हैं या सामान्य डेटा से अलग हो सकते हैं, जिससे उन्हें पहचानना आसान हो जाता है। इसे मैलवेयर डेटा सेट पर लागू किया गया है ताकि मैलवेयर परिवारों के समूहों को देखा जा सके या नेटवर्क घुसपैठ डेटा पर जहाँ विभिन्न हमले के प्रकार स्पष्ट रूप से समूहित होते हैं, आगे की जांच को मार्गदर्शन करते हैं। मूलतः, t-SNE एक ऐसा तरीका प्रदान करता है जिससे साइबर डेटा में संरचना देखी जा सके जो अन्यथा अस्पष्ट होती।
> *साइबर सुरक्षा में उपयोग के मामले:* t-SNE अक्सर **मानव विश्लेषण के लिए उच्च-आयामी सुरक्षा डेटा को दृश्य बनाने के लिए** उपयोग किया जाता है। उदाहरण के लिए, एक सुरक्षा संचालन केंद्र में, विश्लेषक एक घटना डेटा सेट ले सकते हैं जिसमें दर्जनों विशेषताएँ (पोर्ट नंबर, आवृत्तियाँ, बाइट गिनती, आदि) होती हैं और t-SNE का उपयोग करके 2D प्लॉट उत्पन्न कर सकते हैं। हमले इस प्लॉट में अपने स्वयं के क्लस्टर बना सकते हैं या सामान्य डेटा से अलग हो सकते हैं, जिससे उन्हें पहचानना आसान हो जाता है। इसे मैलवेयर डेटा सेट पर लागू किया गया है ताकि मैलवेयर परिवारों के समूहों को देखा जा सके या नेटवर्क घुसपैठ डेटा पर जहाँ विभिन्न हमले के प्रकार स्पष्ट रूप से क्लस्टर होते हैं, आगे की जांच को मार्गदर्शन करते हैं। मूल रूप से, t-SNE एक ऐसा तरीका प्रदान करता है जिससे साइबर डेटा में संरचना देखी जा सके जो अन्यथा अस्पष्ट होती।
#### धारणाएँ और सीमाएँ
t-SNE पैटर्न की दृश्य खोज के लिए महान है। यह समूहों, उप-समूहों, और विसंगतियों को प्रकट कर सकता है जो अन्य रेखीय विधियाँ (जैसे PCA) नहीं कर सकतीं। इसका उपयोग साइबर सुरक्षा अनुसंधान में जटिल डेटा जैसे मैलवेयर व्यवहार प्रोफाइल या नेटवर्क ट्रैफ़िक पैटर्न को दृश्य बनाने के लिए किया गया है। क्योंकि यह स्थानीय संरचना को बनाए रखता है, यह प्राकृतिक समूहों को दिखाने में अच्छा है।
t-SNE पैटर्न की दृश्य खोज के लिए महान है। यह क्लस्टर, उपक्लस्टर, और विसंगतियों को प्रकट कर सकता है जो अन्य रेखीय विधियाँ (जैसे PCA) नहीं कर सकतीं। इसका उपयोग साइबर सुरक्षा अनुसंधान में जटिल डेटा जैसे मैलवेयर व्यवहार प्रोफाइल या नेटवर्क ट्रैफ़िक पैटर्न को दृश्य बनाने के लिए किया गया है। क्योंकि यह स्थानीय संरचना को बनाए रखता है, यह प्राकृतिक समूहों को दिखाने में अच्छा है।
हालांकि, t-SNE गणनात्मक रूप से भारी है (लगभग $O(n^2)$) इसलिए यह बहुत बड़े डेटा सेट के लिए सैंपलिंग की आवश्यकता कर सकता है। इसमें हाइपरपैरामीटर (पेर्प्लेक्सिटी, लर्निंग रेट, पुनरावृत्तियाँ) भी होते हैं जो आउटपुट को प्रभावित कर सकते हैं - उदाहरण के लिए, विभिन्न पेर्प्लेक्सिटी मान विभिन्न पैमानों पर समूहों को प्रकट कर सकते हैं। t-SNE प्लॉट कभी-कभी गलत तरीके से व्याख्यायित किए जा सकते हैं - मानचित्र में दूरी वैश्विक रूप से सीधे अर्थपूर्ण नहीं होती (यह स्थानीय पड़ोस पर ध्यान केंद्रित करता है, कभी-कभी समूह कृत्रिम रूप से अच्छी तरह से अलग दिखाई दे सकते हैं)। इसके अलावा, t-SNE मुख्य रूप से दृश्य के लिए है; यह नए डेटा बिंदुओं को बिना पुनर्गणना के प्रक्षिप्त करने का सीधा तरीका प्रदान नहीं करता है, और इसे भविष्यवाणी मॉडलिंग के लिए पूर्व-प्रसंस्करण के रूप में उपयोग करने के लिए नहीं बनाया गया है (UMAP एक विकल्प है जो कुछ इन मुद्दों को तेज गति के साथ संबोधित करता है)।
हालांकि, t-SNE गणनात्मक रूप से भारी है (लगभग $O(n^2)$) इसलिए यह बहुत बड़े डेटा सेट के लिए सैंपलिंग की आवश्यकता हो सकती है। इसमें हाइपरपैरामीटर (पेर्प्लेक्सिटी, लर्निंग रेट, पुनरावृत्तियाँ) भी होते हैं जो आउटपुट को प्रभावित कर सकते हैं - उदाहरण के लिए, विभिन्न पेर्प्लेक्सिटी मान विभिन्न पैमानों पर क्लस्टर प्रकट कर सकते हैं। t-SNE प्लॉट कभी-कभी गलत तरीके से व्याख्यायित किए जा सकते हैं - मानचित्र में दूरी वैश्विक रूप से सीधे अर्थपूर्ण नहीं होती (यह स्थानीय पड़ोस पर ध्यान केंद्रित करता है, कभी-कभी क्लस्टर कृत्रिम रूप से अच्छी तरह से अलग दिखाई दे सकते हैं)। इसके अलावा, t-SNE मुख्य रूप से दृश्य के लिए है; यह नए डेटा बिंदुओं को बिना पुनर्गणना के प्रक्षिप्त करने का सीधा तरीका प्रदान नहीं करता है, और इसे भविष्यवाणी मॉडलिंग के लिए पूर्व-प्रसंस्करण के रूप में उपयोग करने के लिए नहीं बनाया गया है (UMAP एक विकल्प है जो कुछ इन मुद्दों को तेज गति के साथ संबोधित करता है)।
<details>
<summary>उदाहरण -- नेटवर्क कनेक्शनों का दृश्य बनाना
</summary>
हम t-SNE का उपयोग करके एक बहु-विशेषता डेटा सेट को 2D में घटित करेंगे। उदाहरण के लिए, चलिए पहले के 4D डेटा (जिसमें सामान्य ट्रैफ़िक के 3 प्राकृतिक समूह थे) को लेते हैं और कुछ विसंगति बिंदुओं को जोड़ते हैं। फिर हम t-SNE चलाते हैं और (वैचारिक रूप से) परिणामों का दृश्य बनाते हैं।
हम t-SNE का उपयोग करके एक बहु-विशेषता डेटा सेट को 2D में घटित करेंगे। उदाहरण के लिए, चलिए पहले के 4D डेटा (जिसमें सामान्य ट्रैफ़िक के 3 प्राकृतिक क्लस्टर थे) को लेते हैं और कुछ विसंगति बिंदुओं को जोड़ते हैं। फिर हम t-SNE चलाते हैं और (वैचारिक रूप से) परिणामों का दृश्य बनाते हैं।
```python
# 1 ─────────────────────────────────────────────────────────────────────
# Create synthetic 4-D dataset
@ -432,9 +431,100 @@ plt.legend()
plt.tight_layout()
plt.show()
```
यहाँ हमने अपने पिछले 4D सामान्य डेटासेट को कुछ चरम आउटलेयर के साथ मिलाया है (आउटलेयर में एक विशेषता ("अवधि") बहुत उच्च सेट की गई है, आदि, एक अजीब पैटर्न का अनुकरण करने के लिए)। हम 30 की सामान्य पेरीप्लेक्सिटी के साथ t-SNE चलाते हैं। आउटपुट data_2d का आकार (1505, 2) है। हम वास्तव में इस पाठ में प्लॉट नहीं करेंगे, लेकिन अगर हम करते, तो हम उम्मीद करते कि शायद तीन तंग क्लस्टर 3 सामान्य क्लस्टरों के अनुरूप होंगे, और 5 आउटलेयर उन क्लस्टरों से दूर एकल बिंदुओं के रूप में दिखाई देंगे। एक इंटरएक्टिव वर्कफ़्लो में, हम बिंदुओं को उनके लेबल (सामान्य या कौन सा क्लस्टर, बनाम विसंगति) द्वारा रंगीन कर सकते हैं ताकि इस संरचना की पुष्टि की जा सके। लेबल के बिना भी, एक विश्लेषक उन 5 बिंदुओं को 2D प्लॉट पर खाली स्थान में बैठे हुए देख सकता है और उन्हें चिह्नित कर सकता है। यह दिखाता है कि t-SNE साइबर सुरक्षा डेटा में दृश्य विसंगति पहचान और क्लस्टर निरीक्षण के लिए एक शक्तिशाली सहायक हो सकता है, जो ऊपर दिए गए स्वचालित एल्गोरिदम को पूरा करता है।
यहाँ हमने अपने पिछले 4D सामान्य डेटासेट को कुछ चरम आउटलेयर के साथ मिलाया है (आउटलेयर में एक विशेषता ("अवधि") बहुत उच्च सेट की गई है, आदि, एक अजीब पैटर्न का अनुकरण करने के लिए)। हम 30 की सामान्य पेरीप्लेक्सिटी के साथ t-SNE चलाते हैं। आउटपुट data_2d का आकार (1505, 2) है। हम वास्तव में इस पाठ में प्लॉट नहीं करेंगे, लेकिन अगर हम करते, तो हम शायद 3 सामान्य क्लस्टरों के लिए तीन तंग क्लस्टर देखने की उम्मीद करते, और 5 आउटलेयर उन क्लस्टरों से दूर एकल बिंदुओं के रूप में दिखाई देंगे। एक इंटरएक्टिव वर्कफ़्लो में, हम बिंदुओं को उनके लेबल (सामान्य या कौन सा क्लस्टर, बनाम विसंगति) द्वारा रंगीन कर सकते हैं ताकि इस संरचना की पुष्टि की जा सके। लेबल के बिना भी, एक विश्लेषक उन 5 बिंदुओं को 2D प्लॉट पर खाली स्थान में बैठे हुए देख सकता है और उन्हें चिह्नित कर सकता है। यह दिखाता है कि t-SNE साइबरसिक्योरिटी डेटा में दृश्य विसंगति पहचान और क्लस्टर निरीक्षण के लिए एक शक्तिशाली सहायक हो सकता है, जो ऊपर दिए गए स्वचालित एल्गोरिदम को पूरा करता है।
</details>
### HDBSCAN (शोर के साथ अनुप्रयोगों का पदानुक्रम घनत्व-आधारित स्थानिक क्लस्टरिंग)
**HDBSCAN** DBSCAN का एक विस्तार है जो एकल वैश्विक `eps` मान चुनने की आवश्यकता को समाप्त करता है और **विभिन्न घनत्व** के क्लस्टरों को पुनर्प्राप्त करने में सक्षम है, घनत्व-सम्बंधित घटकों का एक पदानुक्रम बनाकर और फिर उसे संकुचित करके। वनीला DBSCAN की तुलना में यह आमतौर पर
* अधिक सहज क्लस्टर निकालता है जब कुछ क्लस्टर घने होते हैं और अन्य विरल होते हैं,
* केवल एक वास्तविक हाइपर-पैरामीटर (`min_cluster_size`) और एक समझदारी से डिफ़ॉल्ट होता है,
* प्रत्येक बिंदु को एक क्लस्टर-मेंबरशिप *संभावना* और एक **आउटलेयर स्कोर** (`outlier_scores_`) देता है, जो खतरे-शिकार डैशबोर्ड के लिए अत्यंत उपयोगी है।
> [!TIP]
> *साइबरसिक्योरिटी में उपयोग के मामले:* HDBSCAN आधुनिक खतरे-शिकार पाइपलाइनों में बहुत लोकप्रिय है - आप इसे अक्सर व्यावसायिक XDR सूट के साथ भेजे गए नोटबुक-आधारित शिकार प्लेबुक में देखेंगे। एक व्यावहारिक नुस्खा HTTP बीकनिंग ट्रैफ़िक को IR के दौरान क्लस्टर करना है: उपयोगकर्ता-एजेंट, अंतराल और URI लंबाई अक्सर कई तंग समूहों का निर्माण करते हैं जो वैध सॉफ़्टवेयर अपडेटर्स के रूप में होते हैं जबकि C2 बीकन छोटे कम-घनत्व क्लस्टरों के रूप में या शुद्ध शोर के रूप में रहते हैं।
<details>
<summary>उदाहरण - बीकनिंग C2 चैनलों को खोजना</summary>
```python
import pandas as pd
from hdbscan import HDBSCAN
from sklearn.preprocessing import StandardScaler
# df has features extracted from proxy logs
features = [
"avg_interval", # seconds between requests
"uri_length_mean", # average URI length
"user_agent_entropy" # Shannon entropy of UA string
]
X = StandardScaler().fit_transform(df[features])
hdb = HDBSCAN(min_cluster_size=15, # at least 15 similar beacons to be a group
metric="euclidean",
prediction_data=True)
labels = hdb.fit_predict(X)
df["cluster"] = labels
# Anything with label == -1 is noise → inspect as potential C2
suspects = df[df["cluster"] == -1]
print("Suspect beacon count:", len(suspects))
```
</details>
---
### मजबूती और सुरक्षा पर विचार ज़हर देना और प्रतिकूल हमले (2023-2025)
हाल के काम ने दिखाया है कि **अवशिष्ट शिक्षार्थी सक्रिय हमलावरों के प्रति *प्रतिरक्षित* नहीं हैं**:
* **असामान्यताओं के खिलाफ डेटा-ज़हर देना।** चेन *et al.* (IEEE S&P 2024) ने प्रदर्शित किया कि 3% तैयार किए गए ट्रैफ़िक को जोड़ने से Isolation Forest और ECOD का निर्णय सीमा बदल सकती है, जिससे असली हमले सामान्य लगते हैं। लेखकों ने एक ओपन-सोर्स PoC (`udo-poison`) जारी किया जो स्वचालित रूप से ज़हर बिंदुओं का संश्लेषण करता है।
* **क्लस्टरिंग मॉडलों में बैकडोरिंग।** *BadCME* तकनीक (BlackHat EU 2023) एक छोटे ट्रिगर पैटर्न को स्थापित करती है; जब भी वह ट्रिगर प्रकट होता है, एक K-Means-आधारित डिटेक्टर चुपचाप घटना को "सौम्य" क्लस्टर के अंदर रखता है।
* **DBSCAN/HDBSCAN से बचाव।** KU Leuven से 2025 का एक शैक्षणिक प्री-प्रिंट दिखाता है कि एक हमलावर बीकनिंग पैटर्न तैयार कर सकता है जो जानबूझकर घनत्व के अंतराल में गिरता है, प्रभावी रूप से *शोर* लेबल के अंदर छिपता है।
जो उपाय लोकप्रिय हो रहे हैं:
1. **मॉडल स्वच्छता / TRIM।** हर पुनः प्रशिक्षण युग से पहले, 1-2% उच्चतम-हानि बिंदुओं को त्यागें (छंटनी अधिकतम संभावना) ताकि ज़हर देना नाटकीय रूप से कठिन हो जाए।
2. **सहमति एन्सेम्बलिंग।** कई विषम डिटेक्टरों (जैसे, Isolation Forest + GMM + ECOD) को मिलाएं और यदि *कोई भी* मॉडल एक बिंदु को चिह्नित करता है तो एक चेतावनी उठाएं। अनुसंधान से पता चलता है कि इससे हमलावर की लागत >10× बढ़ जाती है।
3. **क्लस्टरिंग के लिए दूरी-आधारित रक्षा।** `k` विभिन्न यादृच्छिक बीजों के साथ क्लस्टर फिर से गणना करें और उन बिंदुओं को अनदेखा करें जो लगातार क्लस्टरों को बदलते हैं।
---
### आधुनिक ओपन-सोर्स उपकरण (2024-2025)
* **PyOD 2.x** (मई 2024 में जारी) ने *ECOD*, *COPOD* और GPU-त्वरित *AutoFormer* डिटेक्टर जोड़े। अब यह एक `benchmark` उप-कमांड के साथ आता है जो आपको **एक लाइन कोड** के साथ अपने डेटासेट पर 30+ एल्गोरिदम की तुलना करने की अनुमति देता है:
```bash
pyod benchmark --input logs.csv --label attack --n_jobs 8
```
* **Anomalib v1.5** (फरवरी 2025) दृष्टि पर केंद्रित है लेकिन इसमें एक सामान्य **PatchCore** कार्यान्वयन भी है - स्क्रीनशॉट-आधारित फ़िशिंग पृष्ठ पहचान के लिए उपयोगी।
* **scikit-learn 1.5** (नवंबर 2024) अंततः नए `cluster.HDBSCAN` रैपर के माध्यम से *HDBSCAN* के लिए `score_samples` को उजागर करता है, इसलिए आपको Python 3.12 पर होने पर बाहरी योगदान पैकेज की आवश्यकता नहीं है।
<details>
<summary>त्वरित PyOD उदाहरण ECOD + Isolation Forest एन्सेम्बल</summary>
```python
from pyod.models import ECOD, IForest
from pyod.utils.data import generate_data, evaluate_print
from pyod.utils.example import visualize
X_train, y_train, X_test, y_test = generate_data(
n_train=5000, n_test=1000, n_features=16,
contamination=0.02, random_state=42)
models = [ECOD(), IForest()]
# majority vote flag if any model thinks it is anomalous
anomaly_scores = sum(m.fit(X_train).decision_function(X_test) for m in models) / len(models)
evaluate_print("Ensemble", y_test, anomaly_scores)
```
</details>
## संदर्भ
- [HDBSCAN हाइरार्किकल डेंसिटी-आधारित क्लस्टरिंग](https://github.com/scikit-learn-contrib/hdbscan)
- चेन, एक्स. *et al.* “अनसुपरवाइज्ड एनॉमली डिटेक्शन की डेटा पॉइज़निंग के प्रति संवेदनशीलता।” *IEEE सुरक्षा और गोपनीयता पर संगोष्ठी*, 2024.
{{#include ../banners/hacktricks-training.md}}